1-ASKA Overview-1 20241031

Written by: Paul Lowndes <[email protected]>

Table of Contents

ASKA: Technical Overview

Patented Technologies

Diagram 1: Overview

Diagram 1: Overview

Diagram 1: Detailed Description

Diagram 3: User Interface Data Flow

Description for Diagram 3: User Interface Data Flows

Diagram 4: Dynamic Trust Gateway (DTG) Architecture

Description for Diagram 4: Dynamic Trust Gateway (DTG) Architecture

Diagram 5: ASKA Detailed Overview

Description for Diagram 5: ASKA Detailed Overview

Diagram 6: Security Monitoring and Response

Description for Diagram 6: Security Monitoring and Response

Diagram 7: Key Management and Recovery

Description for Diagram 7: Key Management and Recovery

Diagram 8: Zone Management and Inter-Zone Communication

Description for Diagram 8: Zone Management and Inter-Zone Communication

Diagram 9: Data Flow and Security Processes

Description for Diagram 9: Data Flow and Security Processes

Diagram 10: Bootstrapping and Attestation

Description for Diagram 10: Bootstrapping and Attestation

Diagrams 11a and 11b: Security Meshes

Description for Diagrams 11a and 11b: Security Meshes

Current Data Flow (with Feedback Loop):

Review of the Security Mesh hierarchy

Diagram 11c: Security Mesh Integration

Description for Diagram 11c: Security Mesh Integration

Diagram 12a: Configuration Management and Deployment

Description for Diagram 12a: Configuration Management and Deployment

Diagram 12b: Configuration Management Module (CMM) Internals

Description for Diagram 12b: Configuration Management Module (CMM) Internals

Diagram 13: Error Handling and Logging

Description for Diagram 13: Error Handling and Logging

Diagram 14a: Onboard AI Agent

Description for Diagram 14a: Onboard AI Agent

Diagram 14b: Onboard AI Agent Update Process

Description for Diagram 14b: Onboard AI Agent Update Process

Diagram 14c: Onboard AI Agent Security System Integration

Description for Diagram 14c: Onboard AI Agent Security System Integration

Diagram 15: BCI Integration:

Description for Diagram 15: BCI Integration

Diagram 16a: Remote UI Session

Description for Diagram 16a: Remote UI Session

Diagram 16b: Remote UI Integration

Description for Diagram 16b: Remote UI Integration

Abbreviations

ASKA: Technical Overview

Building Trust from the Ruins of Broken Promises.

ASKA (Adaptive Secure Kernel Architecture) is a hardware-rooted secure computing architecture designed for high-assurance operation in complex environments, particularly relevant for the age of AGI. It addresses vulnerabilities in current architectures by employing modularity, hardware-enforced isolation, dynamic adaptability, and decentralized governance.  This overview details its core components, referencing the described patent innovations.

1. Core Components and Technologies:

2. Key Relationships and Interactions:

The components of ASKA interact closely to provide comprehensive security.  AESDS updates the STN, DTG, and core components.  DTMS provides trust levels and access control policies to various components. STN and DTG interact for secure data handling.  The ASKA Hub orchestrates and manages all components. The decentralized ledger provides a tamper-proof audit trail. MDATS correlates digital logs with physical microstructures.  MSM monitors system-wide security.  HESE-DAR provides secure data storage. SHVS manages secure collaboration. SIZCF facilitates inter-zone collaboration.  The Resource Manager and Capability Manager dynamically allocate resources and capabilities based on DTMS trust levels and TRCs.  The Policy Engine enforces policies throughout the system.  AI engines provide predictive analysis and automation.  Quantum-resistant communication secures network channels. ZKEE enables secure private computation.  The Secure UI Kernel provides secure user interaction.  The Chiplet Architecture enables dynamic hardware integration. Secure Boot verifies system integrity.

3. Supporting Technologies:

ASKA relies on a number of supporting technologies, including Secure Boot (P1), Data Diodes (P2), Multi-Factor Authentication (P23), Secure UI Kernel (P11), Chiplet Architecture (P12), Decentralized Ledger (P13, P15), MDATS (P17), Secure Hyper-Virtualization (P18), Federated Learning (P19), Secure Data Enclaves (P20), and SIZCF (P22).  SCION routing (P2, P3, P5, P16, P28) underpins secure communication and update distribution.

Patented Technologies

The following patents underpin ASKA's innovative capabilities:

Patent 1: Modular Isolated Execution Stacks with Hierarchical Zones, Decentralized Trust Management, and Capability-Based Inter-Component Communication -  Creates isolated execution environments (IES) with hierarchical zones for granular security. Uses mini-TRCs for localized trust and capability-based communication for secure inter-IES data sharing.  Supports dynamic partitioning for flexible resource allocation.

Patent 2: Secure Inter-IES Communication System with Dynamically Reconfigurable Capabilities, Declarative Policies, and Adaptive Security - Establishes secure communication between IES instances using data diodes for unidirectional data flow and capability-augmented PCFS for bidirectional communication.  Employs a hierarchical security mesh and declarative policies for adaptive security.

Patent 3: Adaptive Multi-Channel Network with Declarative Policy Enforcement and Capability-Aware Forwarding -  Creates a secure and adaptable network with physically segregated channels, managed by a Channel Manager.  Uses declarative policies and capability-aware forwarding for fine-grained access control and dynamic traffic management. Integrates legacy systems securely.

Patent 4: Dynamic Trust Management System (DTMS) with Decentralized Zone Management and TRC-Based Trust -  Establishes and manages trust relationships between IES instances and across zones using TRCs. Employs dynamic trust metrics, decentralized zone management, and distributed consensus for secure and adaptable trust.

Patent 5: Quantum-Resistant Secure Communication with Path-Aware Key Distribution, Dynamic QKD Endpoint Discovery, and SIBRA Bandwidth Reservation -  Implements quantum-resistant communication using QKD, DKM, and PQC.  Features path-aware key distribution, dynamic QKD endpoint discovery, and SIBRA bandwidth reservation for secure and resilient communication.

Patent 6: Zero-Knowledge Execution Environment with Decentralized Verification and Zone-Based Trust - Enables private computation on encrypted data within a Zero-Knowledge Execution Environment (ZKEE).  Uses zero-knowledge proofs and decentralized verification for secure and verifiable computation.

Patent 7: Hardware-Enforced Anomaly Detection, Isolation, and Self-Healing with Secure SCMP Reporting, Zonal Response Policies, and Timing Side-Channel Detection -  Provides hardware-enforced anomaly detection, isolation, and self-healing capabilities.  Uses secure reporting, zonal response policies, and timing side-channel detection for proactive security.

Patent 8: Hardware-Based Memory Protection with Capability-Based Access Control and Dynamic Obfuscation -  Secures memory through dynamic obfuscation, hardware-enforced segmentation, and real-time verification. Employs capability-based access control and an ORAM-like design for enhanced protection against various attacks.

Patent 9: Secure Resource Borrowing and Granular I/O Management with TRC-Based Policies, Multipath Communication, and Hardware-Enforced Isolation -  Enables secure resource borrowing between IES instances and granular I/O management for shared peripherals.  Uses TRC-based policies, multipath communication, and hardware isolation for secure resource access.

Patent 10: AI-Powered Predictive Resource Allocation and Adaptive Scaling for IES with Multipath Optimization, Declarative Policies, and Secure Sharing -  Implements AI-powered predictive resource allocation and adaptive scaling for IES instances.  Uses multipath optimization, declarative policies, and secure sharing for efficient resource management.

Patent 11: Secure UI Kernel with Zonal Isolation, Hardware-Enforced Control-Flow Integrity, and Declarative Policy-Based Rendering -  Creates a secure UI kernel with hardware and zonal isolation.  Employs hardware-enforced CFI, declarative policies, and secure communication for a protected user interface environment.

Patent 12: Secure and Adaptive Chiplet Architecture with Dynamic Resource Allocation, Capability-Based Access Control, and Hardware-Enforced Isolation -  Defines a secure and adaptive chiplet architecture for integrating specialized hardware components. Employs dynamic resource allocation, capability-based access control, and hardware isolation for secure and flexible system design.

Patent 13: Secure and Transparent Zonal Governance System with AI-Driven Authentication, Decentralized Ledger, and Secure Boot Integration -  Establishes a secure zonal governance system with AI-driven authentication.  Uses a decentralized ledger, secure boot integration, and privacy-preserving techniques for secure and transparent governance.

Patent 14: 3D-Printed Microstructure Audit Trail for Citizen Voting System -  Creates a tamper-evident audit trail using 3D-printed microstructures.  Each microstructure has unique identifiers linked to digital records, ensuring verifiable and auditable processes.

Patent 15: AI-Powered Governance Auditing and Transparency with TRC Monitoring and Automated Conflict Resolution -  Implements AI-powered governance auditing and transparency.  Monitors TRCs, resolves conflicts, simulates policy changes, and uses a decentralized ledger for accountability and transparency.

Patent 16: Automated Evolutionary Software Development with Secure, Zoned Deployment, TRC-Based Verification, and Adaptive AI-Driven Security -  Creates an automated evolutionary software development system (AESDS) for ASKA. Employs secure deployment, TRC-based verification, adaptive AI-driven security, and isomorphic architecture monitoring for secure and evolving software.

Patent 17: Multi-Dimensional Audit Trail System for ASKA with AI-Driven Microstructure Analysis and Software Provenance Tracking -  Develops a multi-dimensional audit trail system (MDATS) using digital logs and physical microstructures. Employs AI-driven analysis, software provenance tracking, and real-time anomaly reporting for comprehensive auditing.

Patent 18: Secure and Adaptive Hyper-Virtualization System for Collaborative Workloads with Decentralized Policy Management, Real-time Security Monitoring, and Privacy-Preserving Data Sharing -  Creates a secure hyper-virtualization system (SHVS) for collaborative workloads.  Employs decentralized policy management, real-time monitoring, and privacy-preserving data sharing for secure collaboration.

Patent 19: Privacy-Preserving Federated Learning System using Secure Multi-Party Computation across Isolated Execution Stacks -  Enables privacy-preserving federated learning using secure multi-party computation (MPC) across isolated IES instances.  Supports dynamic orchestration, adaptive privacy techniques, and scalable collaboration for secure and private machine learning.

Patent 20: Secure Data Enclave System with Privacy-Preserving Collaborative Data Analytics -  Creates a secure data enclave system within IES instances.  Supports privacy-preserving data sharing, collaborative data analytics, and dynamic configuration for secure data analysis.

Patent 21: Blockchain-Enabled Self-Evolving Software System with 3D-Printed Microstructure Provenance Tracking and AI-Driven Security -  Develops a blockchain-enabled self-evolving software system integrated with AESDS. Employs blockchain and 3D microstructure provenance tracking for secure and verifiable software evolution.

Patent 22: Secure Inter-Zone Collaboration Framework with Privacy-Preserving Data Exchange and Distributed Ledger Synchronization -  Establishes a secure inter-zone collaboration framework (SIZCF) for secure communication and data sharing between zones.  Employs privacy-preserving data exchange and distributed ledger synchronization for secure and consistent collaboration.

Patent 23: Adaptive Context-Aware MFA with Biometric and Behavioral Analysis -  Implements adaptive context-aware multi-factor authentication (MFA) using biometric and behavioral analysis. Supports out-of-band token verification and decentralized ledger logging for secure authentication.

Patent 24: Hardware-Enforced Secure Encrypted Enclave for Data at Rest (HESE-DAR) with Dynamic Resource Allocation and Decentralized Governance Integration - Creates a hardware-enforced secure encrypted enclave (HESE-DAR) for data at rest protection.  Employs dynamic resource allocation, granular access control, and decentralized governance integration for secure data storage.

Patent 25: Dynamically Reconfigurable Capability-Based Inter-IES Communication for ASKA -  Implements dynamically reconfigurable capability-based communication between IES instances.  Uses real-time reconfiguration based on trust levels, workload demands, and policies for adaptive security and resource management.

Patent 26: Capability-Enhanced Packet-Carried Forwarding State for Secure Inter-Component Communication in Multi-Kernel Systems -  Enhances PCFS with capabilities for secure inter-component communication.  Integrates capabilities into hop fields, providing fine-grained access control and dynamic capability reconfiguration at the data plane level.

Patent 27: Sovereign Trust Network for Secure Key Management and Authentication with Multi-Level Control and Recovery System -  Creates a Sovereign Trust Network (STN) with isolated data and control planes for secure key management and authentication.  Employs multi-level control and a key recovery system for enhanced security and resilience.

Patent 28: System and Method for Adaptive Secure Inter-Zone Communication Across Authenticated and Sovereign Trust Networks -  Develops a Dynamic Trust Gateway (DTG) for secure communication between Authenticated and Sovereign Trust Networks. Employs dynamic channel provisioning, multi-path capability aggregation, and adaptive security for secure inter-zone communication.

Patent 29: Quantum-Entangled One-Time Pad Module for Secure Computing Architectures - Develops a Quantum-Entangled One-Time Pad (QE-OTP) module for secure communication within ASKA.  Leverages quantum entanglement for key distribution, dynamic key generation, and fragmented key management within a HESE-DAR.  Includes an Isomorphic Legacy System Integration module for backward compatibility.

Patent 30: Spatiotemporal Digest for Raster Content Verification - Introduces a system for verifying the authenticity and integrity of raster content (audio, images, video) using a spatiotemporal digest ("spatiotemporal metadata digest").  Captures environmental data during content creation and generates a non-invertible digest, providing a link to physical reality.

Patent 31: ASKA System with Integrated Spatiotemporal Raster Content Verification - Integrates the spatiotemporal digest verification system into ASKA.  Operates within a HESE-DAR under DTMS control, binding the spatiotemporal digest to the content and recording it on the decentralized ledger.  Supports legacy system integration.

Patent 32: Decentralized Privacy Blurring Standard with ASKA Integration - Creates a decentralized privacy blurring system for raster content.  Uses an opt-in blockchain ledger managed by ASKA's DTMS to store anonymized biometric templates.  AI agents on capture devices perform blurring based on these templates and spatiotemporal context.

Patent 33: Decentralized, Hierarchical Bootstrapping and Attestation with Dynamic Trust Integration and Tamper-Evident Audit Trail -  Establishes a secure boot and attestation process leveraging a hierarchical trust model, from a Hardware Root of Trust to individual IES zones.  Dynamically integrates trust assessments with DTMS and uses a tamper-evident audit trail.

Patent 34a: Quantum-Entangled Auxiliary Memory System for Out-of-Band Integrity Verification - Introduces a Quantum-Entangled Auxiliary Memory (EAM) system for out-of-band integrity verification.  Uses quantum entangled storage elements linked to primary storage and a Quantum Entanglement Distribution Network.  Employs cryptographic digests and quantum measurement for verification.

Patent 34b: Spatiotemporal Auxiliary Memory System for Out-of-Band Integrity Verification - Presents a Spatiotemporal Auxiliary Memory System (SAMS) for out-of-band integrity verification.  Captures spatiotemporal metadata during data writes and generates spatiotemporal metadata digests for verification, linking data integrity to its physical creation context.

Patent 34c: Passively Radiative, Spatiotemporal Auxiliary Memory System for Out-of-Band Integrity Verification -  Develops a passively radiative version of the spatiotemporal auxiliary memory system (PR-SAMS).  Uses a Passively Radiative Sensor Array for capturing environmental metadata, reducing power consumption while maintaining strong integrity verification.

Diagram 1: Overview

graph

        ASKA:::bkg

        DataResources:::block

        ASKAHub:::block

        IESClusterx:::block

        DataResources:::block

        NetworkCommunication:::block

        SovereignTrustNetwork:::block

        SecurityMonitoring:::block

        Audit:::block

        MediaHandling:::bkg_strong

        subgraph ASKA["ASKA&nbsp;Instance"]

        subgraph Audit["&nbsp;"]

            DLT["Decentralized<br>Ledger<br>(P13, P15)"]:::audit

            MDATS["MDATS<br>(P17)"]:::audit --> DLT

            Microstructure@{shape: flag, label: "3D<br>Microstructure<br>Audit<br>(P14, P17)" } --> MDATS

            Microstructure:::medium_level

            DLT --> Hub2Hub(("Hub")):::high_level

        end

       

        subgraph DataResources["Data&nbsp;&&nbsp;Resources"]

            HESE_DAR --> SecureStorage

            QEAMS["QEAMS<br>(P34a)"]:::low_level -.-> HESE_DAR

            SAMS["SAMS<br>(P34b)"]:::low_level -.-> HESE_DAR

            PRSAMS["PR-SAMS<br>(P34c)"]:::low_level -.-> HESE_DAR

        end

        subgraph ASKAHub["Hub"]

            Hub(("Hub")):::high_level

            Hub --> AESDS["AESDS<br>(P16)<br>IAMA<br>(P16)"]:::medium_level

            Hub --> DTMS((("&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<br>Dynamic<br>Trust<br>&nbsp;&nbsp;&nbsp;(DTMS)&nbsp;&nbsp;&nbsp;<Br>&nbsp;"))):::medium_level

            Hub --> ChannelMgr["Channel<br>Mgr<br>(P3)"]:::medium_level

            Hub --> CapMgr["Capability<br>Mgr<br>(P25)"]:::medium_level

            Hub --> PolicyEngine["Policy<br>Engine"]:::medium_level

            Hub --> ResourceMgr["Resource<br>Mgr<br>(P9,<br>P10)"]:::medium_level

            Hub --> DTG["DTG<br>(P28)"]:::medium_level

            Hub --> SIZCF["SIZCF<br>(P22)"]:::medium_level

            Hub --> UIIntegration["UI<br>Integration"]:::medium_level

            Hub --> MediaHandling["Media<br>Handling<br>(P30,<br>P31,<br>P32)"]

            Hub --> SecureBoot["Secure Boot (P1, P13, P33)"]:::low_level

            Hub --> AnomalyDetector["Anomaly<br>Detector<br>(P7)"]:::low_level

            Hub --> GovernanceAI["Governance<br>AI<br>(P15)"]:::medium_level

        end

        subgraph IESClusterx["IES&nbsp;Cluster&nbsp;(P1)"]

            IESCluster[["IES<br>Cluster<br>(P1)"]]:::cluster_level

            %% IES1["IES<br>1"]:::medium_level --> IESCluster

            %% IES2["IES<br>2"]:::medium_level --> IESCluster

            %% IESn["IES<br>n"]:::medium_level --> IESCluster

            IESInstances[["IES&nbsp;Instances<br>1..n"]] --> IESCluster

            ZKEEInstances["ZKEE<br>Instances<br>(P6)"] --> IESCluster

            SecureUI["Secure UI Kernel (P11)"]:::ui --> IESCluster

            IESCluster --> SecureChannel["Secure<br>Channels<br>(P3)"]:::network

            IESCluster --> ZKEE["ZKEE<br>(P6)"]:::medium_level

            IESCluster -.-> HESE_DAR(["HESE-DAR<br>(P24)"]):::data

            IESCluster --> LocalMSM["Local<br>MSM<br>(P2)"]:::low_level

            ResourceMgr --> IESCluster

            CapMgr --> IESCluster

        end

        subgraph NetworkCommunication["Network&nbsp;&&nbsp;Communication"]

            SecureChannel --> Firewall["Firewall (P3)"]:::network

            Firewall --> ExternalSystems["External<br>Systems"]:::external

            subgraph SovereignTrustNetwork["STN"]

                STN["Soverign<br>Trust<br>Network<br>(P27)"] --> SecureStorage[("Secure<br>Storage")]:::data

            end

            PolicyEngine --> DTG

            DTG --> STN

            DTG --> ATN["ATN<br>(P3)"]:::medium_level

            AESDS --> STN

            AESDS --> DTG

            ChannelMgr --> SecureChannel

            ChannelMgr --> Firewall

            SIZCF --> ExternalSystems

            IAMA["IAMA<br>(P16)"]:::low_level --> STN 

        end

       

        subgraph SecurityMonitoring["&nbsp;"]

            LocalMSM --> MSM["Security<br>Monitoring<br>&<br>Response<br>(MSM) (P2)"]:::low_level

            MSM --> DTMS

            AnomalyDetector --> DTMS

        end

        GovernanceAI --> DTMS

        DTMS --> STN

        DTMS --> DTG

        DTMS --> CapMgr

        DTMS --> PolicyEngine

        DTMS --> ResourceMgr

        PolicyEngine --> CapMgr

        UIIntegration --> SecureUI

       

        subgraph MediaHandling["Media"]

            MediaRouter{"Media<br>Router"}:::medium_level

            SpatiotemporalDigest{{"Spatiotemporal<br>Digest<br>(P30,<br>P31)"}}:::medium_level --> MediaRouter

            PrivacyBlurring{{"Privacy<br>Blurring<br>(P32)"}}:::medium_level --> MediaRouter

            %% MediaRouter --> MediaHandling

            PadFeeder["Pad<br>Feeder"]:::medium_level --> QEOTP

            QEOTP["QE-OTP<br>(P29)"]:::medium_level --> SecureChannel

        end

    end

    classDef bkg fill:#fafaf7,stroke:#ccc,stroke-width:10px

    classDef block fill:#fafaf7,stroke:#988990,stroke-width:2px

    classDef bkg_strong fill:#def

    classDef high_level fill:#fda,stroke:#333,stroke-width:4px,font-size:1.25em

    classDef cluster_level fill:#b9d3fc,stroke:#333,stroke-width:4px,font-size:1.15em

    classDef medium_level fill:#b9d3fc,stroke:#333,stroke-width:2px

    classDef low_level fill:#aaf,stroke:#333,stroke-width:2px

    classDef data fill:#afa,stroke:#333,stroke-width:2px

    classDef ui fill:#ffa,stroke:#333,stroke-width:2px

    classDef audit fill:#ccf,stroke:#333,stroke-width:2px

    classDef network fill:#eec,stroke:#333,stroke-width:2px

    classDef external fill:#d8d8d8,stroke:#333,stroke-width:2px

    linkStyle default stroke:#039,stroke-width:7px

    linkStyle 32,38 stroke:#07F,stroke-width:11px

    linkStyle 42,43,44,45,46,47,48,49 stroke:#f0f,stroke-width:7px

    linkStyle 20,21,22,23,24,25,26,27,28 stroke:#000,stroke-width:7px

    linkStyle 7,8,9,10,11,12,13,14,15,16,17,18,19 stroke:#3d2,stroke-width:8px

Diagram 1: Overview

ASKA (Adaptive Secure Kernel Architecture) is a multi-layered, hardware-rooted secure computing architecture designed for high-assurance operation in complex environments, especially those involving advanced general intelligence (AGI).  Its core innovation is a defense-in-depth strategy combining hardware isolation, dynamic trust management, AI-driven security, and decentralized governance.

At the heart of ASKA is the ASKA Hub, a central orchestration and management component.  The Hub houses critical modules including: the AI-driven AESDS (Automated Evolutionary Software Development System – P16) and IAMA (Isomorphic Architecture Monitoring and Adaptation – P16) for continuous software evolution and proactive patching of legacy systems; the DTMS (Dynamic Trust Management System – P4) for dynamic trust assessment and access control based on observed behavior, security posture, and declared attributes; the Channel Manager (P3) for managing the Multi-Channel Network; the Capability Manager (P25) for dynamic, fine-grained access control; the Policy Engine for enforcing security policies; the Resource Manager (P9, P10) for AI-powered resource allocation and predictive scaling; the DTG (Dynamic Trust Gateway – P28) mediating communication between the ATN (Authenticated Trust Network – P3) and the highly isolated STN (Sovereign Trust Network – P27); the SIZCF (Secure Inter-Zone Collaboration Framework – P22) for secure inter-zone communication; the UI Integration module;  a Media Handling subsystem (P30, P31, P32) for spatiotemporal digest verification, privacy blurring, and secure media routing; the Secure Boot process (P1, P13, P33); the Anomaly Detector (P7); and the Governance AI (P15) for auditing and conflict resolution.  All significant events are logged to the Decentralized Ledger (DLT – P13, P15) and correlated with a 3D Microstructure Audit Trail (P14, P17) via MDATS (Multi-Dimensional Audit Trail System – P17), ensuring tamper-evident, multi-dimensional auditing.

The IES Cluster (Isolated Execution Stacks – P1) forms the foundation for ASKA’s strong isolation.  Multiple independent IES instances, each with dedicated hardware resources (CPU, memory, I/O, network), run applications and processes in complete isolation.  IES instances can be dynamically partitioned into smaller child-IES instances (P1) for granular control and adaptive scaling (P10).  Secure communication within and between IES instances is facilitated by Secure Channels (P3), with capability-aware forwarding (P26) ensuring fine-grained access control.  IES instances utilize ZKEE (Zero-Knowledge Execution Environment – P6) for private computation and the HESE-DAR (Hardware-Enforced Secure Encrypted Enclave for Data at Rest – P24) for secure data storage.  Local security monitoring is handled by Local MSMs (Local Security Meshes – P2), reporting to the MSM (Master Security Mesh – P2) for overall system-wide monitoring and analysis.  The Secure UI Kernel (P11) provides a trusted user interface, isolated from the underlying system.

ASKA's network infrastructure includes the ATN for internal authenticated communication, the STN for highly sensitive data, and the DTG mediating between them. The Firewall (P3) protects against unauthorized external access.  External communication and inter-zone collaboration are facilitated by the SIZCF (P22), leveraging the Multi-Channel Network (P3) and potentially quantum-resistant communication (P5). The IAMA module (P16) proactively identifies and mitigates vulnerabilities in connected legacy systems.

The Resource Manager (P9, P10) dynamically allocates resources based on trust levels (DTMS), security policies (Policy Engine), and workload demands, using multipath optimization for efficiency and resilience.  Secure data storage is provided by HESE-DAR (P24), employing post-quantum cryptography (P5).  Out-of-band data integrity verification is provided by diverse auxiliary memory systems:  QEAMS (Quantum-Entangled Auxiliary Memory System – P34a), SAMS (Spatiotemporal Auxiliary Memory System – P34b), and PR-SAMS (Passively Radiative Spatiotemporal Auxiliary Memory System – P34c). The Media Handling subsystem (P30, P31, P32) uses a Media Router, Spatiotemporal Digest generation and verification, and Decentralized Privacy Blurring to manage media data securely and privately.  The entire system is underpinned by decentralized governance (P13, P15), with all actions logged on the DLT and the MDATS (P17) for transparency and accountability, further enhanced by the 3D Microstructure Audit Trail (P14, P17).  The QE-OTP (Quantum-Entangled One-Time Pad – P29) provides an additional layer of security for sensitive communications.

Diagram 1: Detailed Description

1. ASKA Hub: The Hub isn't merely a central point; it's the system's brain, orchestrating complex interactions for robust, adaptive security.

2. IES Cluster (P1): The IES Cluster is the foundation of ASKA's isolation, where applications and processes run in their own secure worlds.

3. Network & Communication: This subsystem ensures data moves securely and efficiently within and beyond ASKA.

4. Security Monitoring & Response (MSM - P2): This subsystem is ASKA's immune system, constantly vigilant and responsive to threats.

5. Data & Resources: This area focuses on securely managing data and allocating resources efficiently.

6. UI & External Systems:  This subsystem manages the delicate balance between user interaction, external collaboration, and system security.

7. Media Handling: This subsystem provides specialized and secure processing for media data.

4. Security Monitoring & Response (MSM - P2): This continuously monitors system activity and triggers automated responses to security threats.

5. Data & Resources:  This layer manages data securely and allocates resources dynamically.

6. UI & External Systems:  This subsystem handles secure user interaction and controlled external communication.

7. Media Handling: This subsystem provides specialized, secure mechanisms for handling media data.

Diagram 3: User Interface Data Flow

graph

    subgraph UserInterface["User&nbsp;Interface"]

        User["User<br>(P11, P23)"] --> SecureUI["Secure UI Kernel<br>(P11)"]

        SecureUI --> UI_Monitor["UI Monitor (P37)"]

        UI_Monitor --> InputSanitizer["Input Sanitizer (P11, P37)"]

        MFA["MFA (P23)"] --> SecureUI

    end

    subgraph ASKACore["ASKA&nbsp;Core"]

        InputSanitizer -- Authenticated & Sanitized Input --> IESCluster["IES Cluster (P1)"]

        IESCluster --> AppLayer["Application<br>Layer"]

        AppLayer --> IES1["IES<br>1"]

        AppLayer --> IES2["IES<br>2"]

        AppLayer --> IESn["IES<br>n"]

        IES1 --> App1["App<br>1"]

        IES2 --> App2["App<br>2"]

        IESn --> Appn["App<br>n"]

        IESCluster --> DTMS["DTMS (P4)"]

        DTMS --> PolicyEngine["Policy Engine (P4)"]

        DTMS --> CapMgr["Capability Mgr (P25)"]

        DTMS --> ResourceMgr["Resource Mgr (P9, P10)"]

        App1 -.-> CapMgr

        App2 -.-> CapMgr

        Appn -.-> CapMgr

        App1 --> ResourceMgr

        App2 --> ResourceMgr

        Appn --> ResourceMgr

        subgraph MediaHandling["Media Handling"]

            ResourceMgr --> MediaRouter["Media Router"]

            MediaRouter --> SpatiotemporalDigest["Spatiotemporal Digest (P30, P31)"]

            MediaRouter --> PrivacyBlurring["Privacy Blurring (P32)"]

        end

        subgraph SecureCommunications["Secure&nbsp;Communications"]

             IESCluster 

        end

        subgraph SecurityMonitoringResponse["App&nbsp;Instances"]

            IES1

            IES2 

            IESn 

        end

        subgraph AuditingGovernance["Auditing&nbsp;&&nbsp;Governance"]

            UI_Monitor --> DLT["Decentralized Ledger<br>(P13, P15, P17, P37)"]

        end

    end

    classDef high_level fill:#f9f,stroke:#333,stroke-width:4px

    classDef medium_level fill:#ccf,stroke:#333,stroke-width:2px

    classDef low_level fill:#aaf,stroke:#333,stroke-width:2px

    classDef data fill:#afa,stroke:#333,stroke-width:2px

    classDef ui fill:#ffa,stroke:#333,stroke-width:2px

    classDef audit fill:#ccf,stroke:#333,stroke-width:2px

    classDef network fill:#eec,stroke:#333,stroke-width:2px

    classDef external fill:#d8d8d8,stroke:#333,stroke-width:2px

    linkStyle default stroke:#ccc,stroke-width:2px

Description for Diagram 3: User Interface Data Flows

This diagram depicts the ASKA architecture, illustrating the interplay between user interaction, application execution, core system services, data management, network communication, and security monitoring/auditing.

I. User Interaction Layer:

User interaction is strictly confined to the Secure UI Kernel, ensuring a secure and controlled interface.  This component, detailed in Patent 11, leverages hardware and zonal isolation, CFI (Control-Flow Integrity) to prevent code injection, and declarative policies for managing user access and privileges.  Communication with the underlying system is unidirectional, preventing unauthorized feedback channels and enhancing protection against reverse engineering attacks.

II. Application Layer:

Applications run within isolated execution environments, specifically IES (Isolated Execution Stacks) instances (Patent 1). Each IES offers full-stack hardware isolation (CPU, memory, I/O, network), minimizing the blast radius of potential security compromises and preventing lateral movement.  ASKA allows for dynamic partitioning of IES instances into smaller, isolated child-IES instances to optimize resource usage and further enhance security.  The Secure UI Kernel interacts with these IES instances concurrently, managing and controlling access based on user permissions and trust levels.

III. ASKA Core:

The core system manages trust and resource allocation, centered around the DTMS (Dynamic Trust Management System) (Patent 4).  The DTMS uses TRCs (Trust Root Configurations) (Patent 1) stored on the decentralized ledger to manage trust relationships, dynamically adjusting trust levels based on real-time data from security monitoring (Local MSMs, Anomaly Detector), performance metrics, and system health.  This dynamic adaptation influences access control, resource allocation (via the Resource Manager), and software updates (via AESDS).

The DTMS directly interacts with:

IV. Data & Resource Management:

Applications interact with the Resource Manager for resource allocation. The HESE-DAR (Hardware-Enforced Secure Encrypted Enclave for Data at Rest) (Patent 24) is used for encrypting data at rest, employing hardware-level encryption and anti-tamper mechanisms for securing sensitive data.

V. Media Handling:

This section showcases the newly integrated media processing capabilities.

VI. Network & Communication:

IES instances communicate via Secure Channels (Patent 3) which are managed by the Channel Manager.  These channels provide secure communication pathways, potentially using quantum-resistant communication (Patent 5), and enforce fine-grained access control using capability-aware forwarding (Patent 2, 26). The DTG (Dynamic Trust Gateway) (Patent 28) mediates communication between the ATN (Authenticated Trust Network) and STN (Sovereign Trust Network), dynamically provisioning secure channels based on real-time conditions and trust levels.

VII. External Systems:

ASKA interacts with external systems through the ATN (for authenticated communication) and the STN (for highly sensitive data).  The SIZCF (Secure Inter-Zone Collaboration Framework) (Patent 22) facilitates secure collaboration and data exchange between different ASKA zones.

VIII. Monitoring & Auditing:

ASKA employs a hierarchical security monitoring system:

Diagram 4: Dynamic Trust Gateway (DTG) Architecture

graph

    subgraph "Authenticated&nbsp;Trust&nbsp;Network&nbsp;(ATN)"

        ATN([ATN])

    end

    subgraph "Dynamic&nbsp;Trust&nbsp;Gateway&nbsp;(DTG)"

        DTG([DTG])

        DTG --> Channel_Provisioner[Channel<br>Provisioner];

        DTG --> Capability_Aggregator[Capability<br>Aggregator];

        DTG --> Security_Monitor[Security<br>Monitor];

        DTG --> Audit_Logger[Audit<br>Logger];

        style DTG fill:#ccf,stroke:#333,stroke-width:1px

    end

    subgraph "Sovereign&nbsp;Trust&nbsp;Network&nbsp;(STN)"

        STN([STN])

        STN --> Secure_Channel1((Secure<br>Channel<br>1));

        STN --> Secure_Channel2((Secure<br>Channel<br>2));

        STN --> Secure_ChannelN((Secure<br>Channel<br>N));

        style STN fill:#ccf,stroke:#333,stroke-width:1px

    end

    ATN --> DTG;

    DTG --> STN;

    Channel_Provisioner --> Secure_Channel1;

    Channel_Provisioner --> Secure_Channel2;

    Channel_Provisioner --> Secure_ChannelN;

    Secure_Channel1 --> Capability_Aggregator;

    Secure_Channel2 --> Capability_Aggregator;

    Secure_ChannelN --> Capability_Aggregator;

    Capability_Aggregator --> STN;

    Security_Monitor --> Audit_Logger;

    Security_Monitor --> Channel_Provisioner;

    Audit_Logger --> DLT((Decentralized<br>Ledger));

    style Audit_Logger fill:#aaf,stroke:#333,stroke-width:1px

    style DLT fill:#aaf,stroke:#333,stroke-width:1px

    classDef high_level fill:#f9f,stroke:#333,stroke-width:2px

    classDef medium_level fill:#ccf,stroke:#333,stroke-width:1px

    classDef low_level fill:#aaf,stroke:#333,stroke-width:1px

Description for Diagram 4: Dynamic Trust Gateway (DTG) Architecture

This diagram details the architecture of the Dynamic Trust Gateway (DTG) (P28), a critical component of ASKA responsible for mediating communication between the Authenticated Trust Network (ATN) (P3) and the Sovereign Trust Network (STN) (P27).  The DTG's design emphasizes dynamic adaptability, multi-layered security, and decentralized governance to ensure secure and controlled data flow between these distinct trust domains.  The design incorporates several novel features to improve resilience and transparency over traditional gateway architectures.

I. Authenticated Trust Network (ATN):

The ATN represents the ASKA's internal network with authenticated communication (P3).  It provides secure pathways for communication between authorized entities within the ASKA environment, but with a lower security posture than the STN.  Each communication path within the ATN leverages a dedicated firewall instance, preventing cross-channel interference.

II. Dynamic Trust Gateway (DTG):

The DTG sits at the interface between the ATN and STN, providing dynamic and secure communication mediation. The DTG's architecture consists of the following key modules:

III. Sovereign Trust Network (STN):

The STN (P27) represents the high-security network, designed for sensitive data and cryptographic keys.  It uses dedicated secure channels to maintain its isolation and prevent data leakage. This is enhanced by its isolated data plane and minimal control plane coupling, preventing common attack vectors.

Relationships and Interactions:

The diagram illustrates the data flow and control mechanisms within the DTG:

This architecture provides a highly secure and adaptable gateway solution for managing communication between networks with varying security requirements. The use of dynamic channel provisioning, multi-path aggregation, deep packet inspection, and comprehensive auditing creates a resilient system capable of responding to changing threat landscapes and maintaining data integrity and confidentiality.  Decentralized governance ensures transparency and accountability.

Diagram 5: ASKA Detailed Overview

graph LR

    subgraph ASKA

        subgraph IES["IES (P1)"]

            direction LR

            IESCore[Core] --> ChildIES1[Child IES]

            IESCore --> ChildIES2[Child IES]

            ChildIES1 <--> ChildIES2(("CE-PCFS (P26)"))

            ChildIES1 -.-> HESE-DAR["HESE-DAR (P24)"]

            ChildIES2 -.-> HESE-DAR

            ChildIES1 <--> ZKEE["ZKEE (P6)"]

            ChildIES2 <--> ZKEE

            ResMgr["Resource Mgr (P9, P10)"] <--> ChildIES1

            ResMgr <--> ChildIES2

            SecMon["Security Monitor (P7)"] --> ChildIES1

            SecMon --> ChildIES2

            style IES fill:#f9f,stroke:#333,stroke-width:2px

        end

       

        Hub[ASKA Hub] --> IES

        Hub --> DTMS["DTMS (P4)"]

        Hub --> AESDS["AESDS (P16)"]

        Hub --> DTG["DTG (P28)"]

        Hub -.-> SIZCF["SIZCF (P22)"]

        Hub -.-> SHVS["SHVS (P18)"]

       

        DTMS -.-> IES

        DTMS -.-> DTG

        DTMS -.-> STN["STN (P27)"]

        DTMS <--> DZMS["DZMS (P4)"]

       

        AESDS --> DTG

        AESDS --> IES

        AESDS --> STN

        IAMA["IAMA (P16)"] --> STN

       

        DTG <--> STN

        DTG <--> ATN["ATN (P3)"]

        style Hub fill:#ccf,stroke:#333,stroke-width:2px

    end

    subgraph External Systems/Legacy

        Legacy[Legacy System] --> IAMA

        Ext1[External System/Zone] <--> SIZCF

        Ext2[External High-Trust] <--> STN

    end

    subgraph Supporting Technologies

        DLT["Decentralized Ledger (P13, P15)"] -.-> Hub

        DLT -.-> DTMS

        DLT -.-> AESDS

        DLT -.-> SIZCF

        MDATS["MDATS (P17)"] -.-> Hub

        MDATS -.-> IES

        MDATS -.-> DTG

        MSM["MSM (P2)"] -.-> IES

        MSM -.-> DTG

        MSM -.-> STN

        MultiChannel["Multi-Channel Network (P3)"] -.-> ATN

        MultiChannel -.-> DTG

        Quantum["Quantum-Resistant Comm (P5)"] -.-> DTG

        Quantum -.-> STN

        SecureUI["Secure UI Kernel (P11)"] -.-> IES

        Chiplets["Chiplet Arch (P12)"] -.-> IES

        Chiplets -.-> HESE-DAR

        FedLearn["Federated Learning (P19)"] -.-> IES

        SDE["Secure Data Enclaves (P20)"] -.-> IES

        MFA["Adaptive MFA (P23)"] -.-> Hub

        MFA -.-> STN

        CapMgr["Capability Mgr (P25)"] -.-> IES

        CapMgr -.-> DTG

       

        style DLT fill:#ffc,stroke:#333,stroke-width:2px

    end

    linkStyle 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20 stroke:#000,stroke-width:1.5px;

    linkStyle 21,22,23 stroke:#f00,stroke-width:1.5px;

Description for Diagram 5: ASKA Detailed Overview

This patent describes ASKA, a novel system architecture for establishing and maintaining secure communication and collaboration amongst multiple isolated execution environments (IEEs) while integrating with legacy systems and external entities. ASKA employs a multi-layered, dynamically adaptable approach based on hardware-enforced isolation, decentralized trust management, and AI-driven security. This architecture incorporates several innovative features, including a modular Isolated Execution Stack (IES), a Dynamic Trust Management System (DTMS), an Automated Evolutionary Software Development System (AESDS), and a Sovereign Trust Network (STN), all interacting through a central ASKA Hub.

1. System Architecture Overview:

2. Key Innovative Features:

Diagram 6: Security Monitoring and Response

graph LR

    subgraph "ASKA&nbsp;Security&nbsp;Monitoring"

        A[ASKA<br>Hub] --> B(Master<br>Security<br>Mesh);

        B --> C(Security<br>Policy<br>Engine);

        C --> D(DTMS);

        D --> E(Access<br>Control);

        B --> F(Anomaly<br>Detection<br>Engine);

        F --> G(Alerting<br>System);

        G --> A;

        F --> H(Response<br>System);

        H --> I(Isolator);

        H --> J(Self-Healer);

        H --> K(Resource<br>Manager);

        I --> SecureOS;

        J --> SecureOS;

        K --> SecureOS;

        style B fill:#ccf,stroke:#333,stroke-width:2px

        style F fill:#ccf,stroke:#333,stroke-width:2px

        style G fill:#ccf,stroke:#333,stroke-width:2px

        style H fill:#ccf,stroke:#333,stroke-width:2px

        style I fill:#ccf,stroke:#333,stroke-width:2px

        style J fill:#ccf,stroke:#333,stroke-width:2px

        style K fill:#ccf,stroke:#333,stroke-width:2px

        subgraph "Local&nbsp;Security&nbsp;Meshes&nbsp;(Patent&nbsp;2)"

            L[Local<br>MSM 1] --> B;

            M[Local<br>MSM 2] --> B;

            N[...<br>Local<br>MSM n] --> B;

            style L fill:#bbf,stroke:#333,stroke-width:2px

            style M fill:#bbf,stroke:#333,stroke-width:2px

            style N fill:#bbf,stroke:#333,stroke-width:2px

        end

        subgraph "Data Sources"

            O[IES<br>Instances] --> L;

            P[Network<br>Channels] --> B;

            Q[HESE#8209;DAR] --> B;

            R[Secure<br>UI<br>Kernel] --> B;

            style O fill:#aaf,stroke:#333,stroke-width:2px

            style P fill:#aaf,stroke:#333,stroke-width:2px

            style Q fill:#aaf,stroke:#333,stroke-width:2px

            style R fill:#aaf,stroke:#333,stroke-width:2px

        end

        subgraph "Audit Trail (Patent 17)"

            G --> S[MDATS];

            H --> S;

            S --> DLT;

            style S fill:#ddf,stroke:#333,stroke-width:2px

        end

        subgraph "Decentralized Ledger (Patent 15)"

            DLT[Decentralized<br>Ledger];

        end

         

    end

    linkStyle default stroke:#555,stroke-width:1px

    classDef secure fill:#ccf,stroke:#333,stroke-width:2px

    classDef mesh fill:#bbf,stroke:#333,stroke-width:2px

    classDef data fill:#aaf,stroke:#333,stroke-width:2px

    classDef audit fill:#ddf,stroke:#333,stroke-width:2px

Description for Diagram 6: Security Monitoring and Response

Legend:

Description:

This diagram illustrates the multi-layered security monitoring and response system within ASKA, highlighting its dynamic, adaptive, and decentralized nature.  The system is designed to detect and respond to a wide range of threats, from internal anomalies to external attacks, leveraging advanced techniques for real-time threat assessment and automated remediation.

I. Distributed Security Monitoring:

The system employs a hierarchical monitoring architecture:

II. Threat Assessment and Policy Enforcement:

The MSM provides data to the Security Policy Engine (C), which defines security policies based on risk profiles and real-time context.  These policies incorporate trust levels from the Dynamic Trust Management System (DTMS - P4) and are dynamically updated based on threat intelligence, system status, and user interaction patterns.  The Security Policy Engine directly impacts the DTMS (D), influencing trust assessments which in turn govern access control. The DTMS provides real-time trust assessments for access control decisions.

III. Anomaly Detection and Response:

IV. Auditing and Logging:

The MDATS (S) plays a critical role in maintaining a detailed, tamper-evident audit trail of all security events. MDATS collects data from the Alerting System, Response System, and other security modules. This multi-dimensional audit trail (P17) combines digital logs with physical 3D microstructures (P14), ensuring verifiability and providing comprehensive provenance tracking. All audit trail information is logged on the Decentralized Ledger (DLT - P13, P15) for permanent storage and auditable access.

Data Sources:

The system gathers data from diverse sources, including IES instances (O), Network Channels (P), HESE-DAR (Q), and the Secure UI Kernel (R), providing a holistic view of system security.

This design offers a robust, responsive, and adaptive security system, effectively mitigating a wide spectrum of threats.  The hierarchical monitoring structure, decentralized governance, automated response system, and comprehensive auditing contribute to the overall security and reliability of the ASKA architecture.  The system's capacity for dynamic adaptation is crucial for responding to the ever-evolving threat landscape.

Diagram 7: Key Management and Recovery

graph

    subgraph "ASKA&nbsp;Key&nbsp;Management&nbsp;&&nbsp;Recovery"

        A[ASKA Hub] --> B(Key Management System);

        B --> C(Key Generation);

        C --> D(Secure Key Storage);

        D --> E[IES Instances];

        B --> F(Key Usage Monitoring);

        F --> B;

        B --> G(Key Revocation);

        G --> D;

        style B fill:#ccf,stroke:#333,stroke-width:2px

        style D fill:#ccf,stroke:#333,stroke-width:2px

        style G fill:#ccf,stroke:#333,stroke-width:2px

        class B,D,G key

        subgraph "Sovereign Trust Network (STN) (Patent 27)"

            H[STN Key Manager] --> D;

            I[STN Authentication Manager] --> H;

            H --> J(Key Recovery Controller);

            J --> K(Synchronization Nodes);

            K --> L[External High-Trust Environments];

            style H fill:#bbf,stroke:#333,stroke-width:2px

            style J fill:#bbf,stroke:#333,stroke-width:2px

            style K fill:#bbf,stroke:#333,stroke-width:2px

            class H,J,K stn

        end

        subgraph "Dynamic&nbsp;Trust&nbsp;Gateway&nbsp;(DTG)&nbsp;(Patent&nbsp;28)"

            M[DTG Capability Manager] --> B;

            M --> N(Dynamic Channel Provisioning);

            N --> O[ATN/STN Communication];

            style M fill:#aaf,stroke:#333,stroke-width:2px

            style N fill:#aaf,stroke:#333,stroke-width:2px

            class M,N dtg

        end

        subgraph "Hardware Enclaves"

            P["HESE-DAR (Patent 24)"] --> D;

            style P fill:#ddf,stroke:#333,stroke-width:2px

        end

       

        subgraph "Audit Trail (Patent 17)"

            F --> Q[MDATS];

            G --> Q;

            Q --> R[Decentralized Ledger];

            style Q fill:#ccf,stroke:#333,stroke-width:2px

            class Q audit

        end

    end

    linkStyle default stroke:#555,stroke-width:1px

    classDef key fill:#ccf,stroke:#333,stroke-width:2px

    classDef stn fill:#bbf,stroke:#333,stroke-width:2px

    classDef dtg fill:#aaf,stroke:#333,stroke-width:2px

    classDef enclave fill:#ddf,stroke:#333,stroke-width:2px

    classDef audit fill:#ccf,stroke:#333,stroke-width:2px

Description for Diagram 7: Key Management and Recovery

Legend:

Description:

This diagram details the architecture of ASKA's key management and recovery system, emphasizing its design for high security, resilience, and robust auditability. The system incorporates several novel features to address the challenges of managing cryptographic keys in a complex, distributed, and potentially hostile environment.

I. Centralized Key Management:

The ASKA Hub (A) orchestrates key management via the Key Management System (B). This system is responsible for:

II. Sovereign Trust Network (STN) Key Management (Patent 27):

The STN (P27) maintains a dedicated key management subsystem, further enhancing security and resilience:

III. Dynamic Trust Gateway (DTG) Key Integration (Patent 28):

The DTG (P28) leverages ASKA's key management system for secure communication between ATN and STN:

IV. Hardware Enclaves and Secure Storage:

The HESE-DAR (P24) plays a critical role in providing high-assurance secure storage for keys, integrating with the Key Management System for secure key retrieval and storage.

V. Auditing and Logging:

The Multi-Dimensional Audit Trail System (MDATS - P17) meticulously logs all key management and recovery events.  This includes key generation, usage, revocation, and recovery attempts.  This detailed audit trail is stored on the Decentralized Ledger (R - P13, P15), ensuring transparency and tamper-evidence.  The MDATS uses techniques (P14) to integrate physical tamper-evident audit trails (3D microstructures) alongside the digital audit trails for increased assurance.

This architecture provides a robust and secure solution for managing cryptographic keys in a highly secure environment.  The multi-layered approach, use of hardware security mechanisms (P24), and integration with ASKA's core security components contribute to high assurance and resilience. Decentralized governance and the comprehensive audit trail ensure transparency and accountability in all key operations. The key recovery system ensures high data availability in the face of various threats.

Diagram 8: Zone Management and Inter-Zone Communication

graph LR

    subgraph "ASKA&nbsp;Zone&nbsp;Management&nbsp;&&nbsp;Inter#8209;Zone&nbsp;Communication"

        A[ASKA Global Control Plane] --> B(Zone Creation & Management);

        B --> C(Zone Hierarchy);

        C --> D{Zones};

        B --> E(TRC Management);

        E --> C;

        E --> F[Decentralized Ledger];

        style B fill:#ccf,stroke:#333,stroke-width:2px

        style E fill:#ccf,stroke:#333,stroke-width:2px

        class B,E management

        subgraph Zones

            D --> G[ASKA Hub];

            G --> H(IES Clusters);

            G --> I(Local Security Mesh);

            H --> J[Secure Communication Agent];

            J --> K[Multi-Channel Network];

            K --> L[Other Zones];

            style G fill:#bbf,stroke:#333,stroke-width:2px

            style H fill:#bbf,stroke:#333,stroke-width:2px

            style J fill:#bbf,stroke:#333,stroke-width:2px

            style K fill:#bbf,stroke:#333,stroke-width:2px

            class G,H,J,K zone

        end

        subgraph "Inter#8209;Zone&nbsp;Communication&nbsp;(Patent&nbsp;22)"

            L --> M[SIZCF];

            M --> N[External Systems];

            style M fill:#aaf,stroke:#333,stroke-width:2px

            class M interzone

        end

       

        subgraph "Auditing&nbsp;&&nbsp;Governance&nbsp;(Patent&nbsp;17)"

            E --> O[MDATS];

            O --> F;

            style O fill:#ddf,stroke:#333,stroke-width:2px

            class O audit

        end

    end

    linkStyle default stroke:#555,stroke-width:1px

    classDef management fill:#ccf,stroke:#333,stroke-width:2px

    classDef zone fill:#bbf,stroke:#333,stroke-width:2px

    classDef interzone fill:#aaf,stroke:#333,stroke-width:2px

    classDef audit fill:#ddf,stroke:#333,stroke-width:2px

Description for Diagram 8: Zone Management and Inter-Zone Communication

This diagram illustrates ASKA's zone management and inter-zone communication. While the SIZCF diagram shows inter-zone collaboration, this more comprehensive diagram shows the overall zone architecture, including zone creation, management, trust relationships between zones, and the various communication pathways, including the role of the ASKA Hubs and the Decentralized Ledger.

Legend:

Description:

This diagram illustrates ASKA's zone management and inter-zone communication framework (P22), a crucial aspect of its architecture that enables secure and controlled collaboration between multiple, independent security domains. This system combines a hierarchical zone structure with dynamic trust management and secure communication protocols to facilitate cooperation while maintaining strong isolation between zones.

I. ASKA Global Control Plane:

The ASKA Global Control Plane (A) acts as the central authority for managing the overall zone structure and configuration. This is not a single point of failure, instead its functions are implemented using replicated, distributed components secured with cryptographic mechanisms. It interacts with the system's zone creation and management processes.

II. Zone Creation and Management (B):

The Zone Creation & Management (B) module is responsible for creating and managing ASKA zones.  This module uses a dynamic policy language to define parameters such as security policies, resource allocation, and allowed inter-zone communication.  These policies incorporate trust levels (P4) and are persistent in the decentralized ledger (P13, P15).  The module interacts with the TRC Management module for trust definition and propagation.

III. Zone Hierarchy (C):

ASKA zones are organized into a flexible hierarchy (C) reflecting the organization's structure and security needs.  This allows for granular control over trust relationships and inter-zone communication. Trust and policy inheritance occur from parent to child zones, simplifying management and consistency.

IV. Zones (D):

Each zone (D) functions as an independent ASKA deployment, containing its own:

V. Inter-Zone Communication (Patent 22):

Secure inter-zone communication is facilitated by the Secure Inter-Zone Collaboration Framework (SIZCF) (M). The SIZCF utilizes secure communication channels (P3, P5) and privacy-preserving protocols (P20, P22) for secure data exchange.  Communication between zones is dynamically managed, guided by trust levels (P4), policies (P13, P15), and real-time threat assessments (P2). The SIZCF provides access to external systems while maintaining a robust security boundary.

VI. Auditing and Governance (Patent 17):

All zone management and inter-zone communication activities are logged on the Decentralized Ledger (F) (P13, P15) using the Multi-Dimensional Audit Trail System (MDATS - O) (P17). MDATS tracks all critical events, including zone creation/modification, TRC updates, trust relationships, and inter-zone data exchange. This data can be analyzed by the Governance AI component for identification of anomalies and proactive security enhancements.

This architecture enables secure and flexible collaboration across multiple ASKA zones, preserving the integrity and confidentiality of data while allowing for a managed expansion of the system.  The decentralized governance model enhances transparency, accountability, and resilience against attacks.  Dynamic adaptation based on trust and security assessments ensure continuous optimization of the system's security posture. The integration with the MDATS and decentralized ledger ensures a comprehensive and tamper-evident audit trail of all zone management and inter-zone communication activities.

Diagram 9: Data Flow and Security Processes

graph LR

    subgraph ASKA Zone Internal Data Flow & Security

        A[ASKA Hub] --> B(IES<br>Clusters);

        B --> C(Applications);

        C --> D[Secure Data Enclaves];

        D --> E[Federated<br>Learning];

        B --> F(Local<br>Security<br>Meshes);

        F --> G(Master<br>Security<br>Mesh);

        G --> H(Anomaly<br>Detection);

        H --> I(Response<br>System);

        I --> B;

        G --> A;

        style A fill:#ccf,stroke:#333,stroke-width:2px

        style G fill:#ccf,stroke:#333,stroke-width:2px

        class A,G hub

        subgraph "Data Services"

            D --> J(Data<br>Input/Output);

            J --> K[Multi#8209;Channel<br>Network];

            K --> L[Other<br>Zones<br>/<br>External<br>Systems];

            style D fill:#bbf,stroke:#333,stroke-width:2px

            style E fill:#bbf,stroke:#333,stroke-width:2px

            style J fill:#bbf,stroke:#333,stroke-width:2px

            style K fill:#bbf,stroke:#333,stroke-width:2px

            class D,E,J,K data

        end

        subgraph "ASKA Hub"

           A --> M(DTMS);

           M --> B;

           A --> N(AESDS);

           N --> B;

           A --> O(Policy<br>Engine);

           O --> G;

           style M fill:#aaf,stroke:#333,stroke-width:2px

           style N fill:#aaf,stroke:#333,stroke-width:2px

           style O fill:#aaf,stroke:#333,stroke-width:2px

           class M,N,O hubservices

        end

        subgraph "Decentralized Ledger"

            P[Decentralized<br>Ledger] -.-> A;

            P -.-> D;

            P -.-> E;

            P -.-> G;

            style P fill:#ddf,stroke:#333,stroke-width:2px

            class P ledger

        end

    end

    linkStyle default stroke:#555,stroke-width:1px

    classDef hub fill:#ccf,stroke:#333,stroke-width:2px

    classDef data fill:#bbf,stroke:#333,stroke-width:2px

    classDef hubservices fill:#aaf,stroke:#333,stroke-width:2px

    classDef ledger fill:#ddf,stroke:#333,stroke-width:2px

Description for Diagram 9: Data Flow and Security Processes

Legend:

Description:

This diagram provides an in-depth view of the internal data flow and security processes within a single ASKA zone.  It illustrates how data is securely processed, transferred, and monitored within the zone, emphasizing the interactions between the Hub, IES clusters, security modules, data services, and the Decentralized Ledger.  The layered and integrated security architecture demonstrates ASKA's ability to maintain robust data protection and system integrity.

I. ASKA Hub (A):

The ASKA Hub acts as the central orchestrator and management point within the zone. It coordinates activities of the IES clusters, manages security policies, and oversees communication with other zones and external systems.  The Hub incorporates essential security modules and services:

II. Isolated Execution Stacks (IES) Clusters (B):

IES Clusters provide secure and isolated execution environments for applications.  Each IES (P1) has dedicated hardware resources (CPU, memory, I/O, network), minimizing the impact of compromises.

III. Secure Data Services:

ASKA zones host various data services within IES instances, including:

IV. Data Flow and Communication:

Data within the ASKA zone is transferred through secure channels managed by the Multi-Channel Network (K).  The MCN (P3) utilizes physically segregated channels with dedicated firewalls, preventing cross-channel interference and ensuring the isolation of data flows.  The MCN leverages capability-aware forwarding (P2, P26) for fine-grained access control and dynamic traffic management.  Quantum-resistant communication (P5) using techniques like QKD, DKM, and PQC further secure these channels against sophisticated attacks.

Data Services interact with the MCN for secure data transfer both within the zone and with other zones or external systems (L), ensuring that sensitive information is protected during transit.

V. Security Monitoring and Response:

VI. Decentralized Ledger (P):

The Decentralized Ledger (P13, P15) serves as a tamper-proof repository for audit trails, security policies, zone configuration, and other critical data.  Its distributed nature ensures high availability, integrity, and transparency. The Decentralized Ledger integrates with the MDATS (P17) to record events and activities from all ASKA components within the zone, including the Hub, IES clusters, data services, and the security monitoring system.

Interactions and Integration:

This diagram illustrates the flow of data and control information within the ASKA zone:

This layered and integrated approach creates a robust and dynamic security architecture within the ASKA zone. The combination of hardware-enforced isolation (P1, P24), advanced threat detection (P7), automated response mechanisms (P7), and secure communication (P2, P3, P5, P26) ensures a high level of data protection, system integrity, and resilience against sophisticated threats.  Decentralized governance and the comprehensive audit trail provide transparency, accountability, and trust in the system's operation.

Diagram 10: Bootstrapping and Attestation

graph TD

    subgraph "ASKA&nbsp;Bootstrapping&nbsp;&&nbsp;Attestation"

        A[Power On] --> B(Hardware Root of Trust);

        B --> C{Secure Boot ROM};

        C --> D(Bootloader Verification);

        D -- Verified --> E(Secure OS Loading);

        D -- Tampered --> F[Halt/Alert];

        E --> G(IES Initialization);

        G --> H(Mini-TRC Verification);

        H -- Verified --> I(DTMS Integration);

        H -- Tampered --> F;

        I --> J(Application Loading);

        J --> K(Attestation Service);

        K --> L(Attestation Report);

        L --> M[Decentralized Ledger];

        style C fill:#ccf,stroke:#333,stroke-width:2px

        style G fill:#ccf,stroke:#333,stroke-width:2px

        style K fill:#ccf,stroke:#333,stroke-width:2px

        class C,G,K secure

        subgraph "Trust&nbsp;Root&nbsp;Configuration&nbsp;(TRC)"

            N[TRC] --> C;

            N --> H;

            style N fill:#bbf,stroke:#333,stroke-width:2px

            class N trc

        end

        subgraph "Dynamic&nbsp;Trust&nbsp;Management&nbsp;System&nbsp;(DTMS)"

            D --> O[DTMS];

            O --> I;

            style O fill:#aaf,stroke:#333,stroke-width:2px

            class O dtms

        end

       

    end

    linkStyle default stroke:#555,stroke-width:1px

    classDef secure fill:#ccf,stroke:#333,stroke-width:2px

    classDef trc fill:#bbf,stroke:#333,stroke-width:2px

    classDef dtms fill:#aaf,stroke:#333,stroke-width:2px

Description for Diagram 10: Bootstrapping and Attestation

The diagram represents a high-level visualization of the ASKA bootstrapping and attestation process.  This dedicated diagram illustrates secure boot’s steps, from initial power-on to establishing a trusted execution environment within an IES, and the integration with the DTMS, TRCs, and the Decentralized Ledger.

Legend:

Description:

This diagram provides a comprehensive illustration of the ASKA bootstrapping and attestation process, showcasing the system's multi-layered approach to building a chain of trust from the initial power-on to the execution of applications.  This process ensures the integrity and authenticity of all components, establishing a secure foundation for all subsequent operations within the ASKA environment.

I. Secure Boot Sequence:

  1. Power On (A): The process begins with the initial power-on of a ASKA component.

  1. Hardware Root of Trust (B):  The system's foundation of trust resides in a hardware-based root of trust. This could be a physically secure and tamper-resistant element like a Trusted Platform Module (TPM) or a secure processor with immutable boot code. The HRT provides the initial anchor for the chain of trust.

  1. Secure Boot ROM (C): The immutable Secure Boot ROM contains the initial secure boot code, signed with the root key from the Trust Root Configuration (TRC - N).  This code is cryptographically verified upon execution, ensuring its integrity.

  1. Bootloader Verification (D): The Secure Boot ROM executes the bootloader, whose integrity is verified against signatures stored in the TRC (N). This verification (D) prevents the execution of unauthorized or compromised bootloaders.  The DTMS (O) is also consulted during this step to check for revocation or other policy violations.

  1. Secure OS Loading (E): If the bootloader verification is successful, the secure operating system (OS) is loaded.  The secure OS is designed to provide a trusted execution environment with isolation mechanisms and security features.

  1. Halt/Alert (F):  If any tampering or integrity violations are detected during the boot process, the system halts immediately and generates an alert using ASKA’s secure communication channels (P2, P3) and the SCMP protocol (P7).  This proactive response prevents the system from booting into an untrusted state.

II. IES Initialization and Integration:

  1. IES Initialization (G): Once the Secure OS is loaded, it initializes the Isolated Execution Stacks (IES - P1), creating secure and isolated environments for applications.

  1. Mini-TRC Verification (H): Each IES has its own mini-TRC (P1), which defines local trust roots and policies specific to that instance.  The secure OS verifies the integrity of each mini-TRC before proceeding. This ensures that the trust policies within each IES are valid and have not been compromised.

  1. DTMS Integration (I):  The IES instance then integrates with the Dynamic Trust Management System (DTMS - P4), sharing its mini-TRC and security posture.  The DTMS incorporates this information into its trust assessment process, assigning trust levels to the IES instance based on its security configuration and provenance.

III. Application Loading and Attestation:

  1. Application Loading (J):  Applications are loaded within the secure IES environment.  The DTMS and Policy Engine (O) enforce access control policies, ensuring only authorized applications are executed.

  1. Attestation Service (K):  The Attestation Service generates a comprehensive report of the system's security posture, including hardware and software integrity measurements, configuration details, and trust levels.  This report provides verifiable evidence that the system booted securely and is running in a trusted state.

  1. Attestation Report (L):  The Attestation Report (L) is signed using cryptographic techniques (P5, P24) to ensure its authenticity and integrity.  It is then securely transmitted to the Decentralized Ledger (M) using ASKA’s communication channels (P3).

  1. Decentralized Ledger (M):  The Decentralized Ledger (P13, P15) provides a tamper-proof and auditable record of the Attestation Report. This ensures transparency and accountability for the entire bootstrapping and attestation process.

IV. Trust Root Configuration (TRC):

The TRC (N) plays a crucial role throughout the process. It contains the root keys and security policies used for verifying the Secure Boot ROM, bootloader, and mini-TRCs.  The TRC itself is stored securely, potentially using HESE-DAR (P24) or a similar tamper-evident mechanism.

V. Dynamic Trust Management System (DTMS):

The DTMS (O) dynamically assesses the trust level of each component based on its provenance, security posture, and observed behavior. It integrates with the bootstrapping process by validating the bootloader and influencing the trust level assigned to IES instances. The DTMS uses distributed consensus (P13) and blockchain technology (P15) to ensure the integrity and consistency of trust assessments.

VI. Interactions and Security Mechanisms:

The diagram highlights the sequential steps involved in bootstrapping and attestation, demonstrating the system's commitment to establishing a chain of trust from the ground up.  The system utilizes a combination of hardware security (HRT, Secure Boot ROM), cryptographic verification (digital signatures, hashing), tamper detection (halt/alert), secure communication channels (P2, P3, P5, P26), and dynamic trust management to ensure the integrity and authenticity of the entire boot process and the resulting execution environment. The decentralized ledger provides a tamper-evident record for auditing and transparency. This multi-layered approach creates a robust and secure foundation for the ASKA system, mitigating a wide range of potential threats, including sophisticated attacks targeting the boot process.

Diagrams 11a and 11b: Security Meshes

Diagram 11a: Overview

graph LR

    subgraph "ASKA&nbsp;Security&nbsp;Mesh"

        IES[IES Instance]:::ies -- Data Plane (Passive/Read-Only) --> RAMSSD[RAM/SSD]:::data

        LSM[LSM]:::lsm -- Data Plane (Passive/Read-Only) --> RAMSSD

        Watcher[Watcher Mesh]:::watcher -- One-Way Control Plane --> LSM

        Watcher -- Data Plane (Passive/Read-Only) --> RAMSSD

        Watcher -- Bidirectional Control Plane --> AI[AI Hub]:::ai

        MSM[MSM]:::msm -- One-Way Control Plane --> LSM

        Watcher -- One-Way Control Plane --> MSM

    End

    classDef ies fill:#ccf,stroke:#333,stroke-width:1px

    classDef lsm fill:#aaf,stroke:#333,stroke-width:1px

    classDef watcher fill:#ddf,stroke:#333,stroke-width:1px

    classDef msm fill:#f9f,stroke:#333,stroke-width:2px

    classDef ai fill:#afa,stroke:#333,stroke-width:1px

    classDef data fill:#ddd,stroke:#333,stroke-width:1px

Diagram 11b: Expanded

graph LR

    subgraph RAM/SSD Banks

        direction LR

        RAM1[RAM<br>Bank<br>1]

        SSD1[SSD<br>Bank<br>1]

        RAM2[RAM<br>Bank<br>2]

        SSD2[SSD<br>Bank<br>2]

    end

    subgraph IES Instance 1

        direction LR

        IES1[IES 1] -- Data Plane<br>(Read-Only) --> RAM1

        IES1 -- Data Plane<br>(R/O) --> SSD1

    end

   

    subgraph IES Instance 2

        direction LR

        IES2[IES 2] -- Data Plane<br>(R/O) --> RAM2

        IES2 -- Data Plane<br>(R/O) --> SSD2

    end

    subgraph LSM 1

        direction LR

        LSM1[LSM 1] -- Data Plane<br>(R/O) --> RAM1

        LSM1 -- Data Plane<br>(R/O) --> SSD1

    end

    subgraph LSM 2

        direction LR

        LSM2[LSM 2] -- Data Plane<br>(R/O) --> RAM2

        LSM2 -- Data Plane<br>(R/O) --> SSD2

    end

    subgraph LSM Watcher Mesh 1

        LW1[LSM<br>Watcher<br>1] -- One-Way<br>Control Plane --> LSM1

        LW1 -- Data Plane<br>(R/O) --> RAM1

        LW1 -- Data Plane<br>(R/O) --> SSD1

    end

    subgraph LSM Watcher Mesh 2

        LW2[LSM<br>Watcher<br>2] -- One-Way<br>Control Plane --> LSM2

        LW2 -- Data Plane<br>(R/O) --> RAM2

        LW2 -- Data Plane<br>(R/O) --> SSD2

    end

    subgraph MSM Watcher Mesh

        MW[MSM<br>Watcher] -- One-Way<br>Control Plane --> MSM

    end

   

    subgraph "AI Cyber<br>Intelligence Hub"

        AI[AI Hub]

    end

   

    subgraph MSM

        MSM[Master Security Mesh]

    end

    MW -- Bidirectional<br>Control Plane --> AI

    LW1 -- Bidirectional<br>Control Plane --> AI

    LW2 -- Bidirectional<br>Control Plane --> AI

    MSM -- One-Way<br>Control Plane --> LSM1

    MSM -- One-Way<br>Control Plane --> LSM2

    LW1 -- One-Way<br>Control Plane --> MSM

    LW2 -- One-Way<br>Control Plane --> MSM

    IES1 -- Monitored<br>by<br>LSM --> LSM1

    IES2 -- Monitored<br>by<br>LSM --> LSM2

Description for Diagrams 11a and 11b: Security Meshes

I. Core Components and their Interactions:

  1. RAM/SSD Banks: These represent the system's physical memory and storage, the ultimate targets of many sophisticated attacks.

  1. IES (Isolated Execution Stacks):  The foundation of ASKA, IES instances provide hardware-enforced isolation for applications and processes.  This compartmentalization limits the "blast radius" of any potential compromise.

  1. LSM (Local Security Mesh):  Each IES has a dedicated LSM operating alongside it.  The LSM is responsible for monitoring the associated IES's activity, including its interactions with RAM/SSD.  Critically, this monitoring occurs through a passive, read-only data plane, ensuring no interference with the IES's operation and minimizing the attack surface exposed to the LSM itself.

  1. LSM Watcher Mesh: This is the first layer of the "watcher" system.  Each LSM has a dedicated Watcher Mesh that monitors both the LSM and the associated IES. The LSM Watcher passively observes RAM/SSD access patterns of the IES and the LSM, looking for anomalies.  It communicates with the LSM via a one-way control plane to receive anomaly reports.  It has a bidirectional control plane connection with the AI Cyber Intelligence Hub, enabling it to send detailed reports and receive instructions.

  1. MSM (Master Security Mesh): The MSM oversees all LSMs within a ASKA domain.  It receives anomaly reports from the LSM Watcher Meshes via a one-way control plane.  It also has its own dedicated Watcher Mesh for independent oversight.  The MSM distributes security policies and updates to the LSMs via a one-way control plane, preventing compromised LSMs from propagating malicious instructions upwards.

  1. MSM Watcher Mesh: This Watcher mirrors the function of the LSM Watchers, providing independent monitoring of the MSM's RAM/SSD access. It reports to the AI Hub via a bidirectional control plane.

  1. Data Plane (Passive/Read-Only): This represents the innovative, out-of-band connection between the LSMs, their Watchers, and the RAM/SSD.  It employs an undisclosed mechanism to passively observe memory and storage access without any direct interaction, ensuring the integrity and availability of the monitored systems.  This passive monitoring could involve analyzing spatiotemporal metadata (temperature fluctuations, electromagnetic emissions, power consumption variations) associated with RAM/SSD access to infer activity and detect anomalies without direct data access.

  1. Control Plane:  The control plane connections facilitate the communication of security policies, updates, and anomaly reports.  The one-way nature of the control plane from MSM to LSMs and from Watcher Meshes to MSM/LSMs is crucial for containing compromises.  The bidirectional control plane between the Watcher Meshes and the AI Hub allows for real-time feedback and adaptive security responses.

  1. AI Cyber Intelligence Hub: The central intelligence unit of the system.  It receives reports from all Watcher Meshes, uses advanced analytics and AI to identify complex attack patterns, and triggers automated responses.  The bidirectional connection with the Watcher Meshes allows for dynamic policy adjustments and targeted investigations.

II. ASKA's Enhanced Security Posture:

The architecture elucidates ASKA's security posture in several ways:

III. Integration with Existing ASKA Features:

The security elements integrate seamlessly with ASKA as follows:

Current Data Flow (with Feedback Loop):

  1. Monitoring: LSM monitors IES resource access (RAM/SSD) and reports anomalies to Watcher Mesh.
  2. Analysis & Reporting: Watcher Mesh analyzes data, reports to AI Hub, and receives instructions.
  3. Decision Making: AI Hub analyzes reports, makes decisions, and instructs Watcher Mesh.
  4. Enforcement: Watcher Mesh instructs LSM to take action (e.g., isolation, process termination).  This instruction creates the feedback loop.

Goal:  Eliminate step 4, preventing the AI Hub from directly instructing the LSM.

Proposals for Eliminating the Feedback Loop:

Proposal 1:  AI Hub to ASKA Hub Enforcement:

Proposal 2:  Decentralized Enforcement with Consensus:

graph

subgraph "Proposal&nbsp;2:&nbsp;Decentralized&nbsp;Enforcement&nbsp;with&nbsp;Consensus"

    subgraph IES Instance 1

        LSM1[LSM 1] -- Passive Data Plane --> RAMSSD[RAM/SSD]

        IES1[IES 1] -- Data Plane --> RAMSSD

        Watcher1[Watcher 1] -- Unidirectional Control Plane --> LSM1

        Watcher1 -- Passive Data Plane --> RAMSSD

    end

    subgraph IES Instance 2

        LSM2[LSM 2] -- Passive Data Plane --> RAMSSD

        IES2[IES 2] -- Data Plane --> RAMSSD

        Watcher2[Watcher 2] -- Unidirectional Control Plane --> LSM2

        Watcher2 -- Passive Data Plane --> RAMSSD

    end

    AIHub[AI Hub] -.-> Consensus["Consensus Engine (P13)"]

    Watcher1 -.-> Consensus

    Watcher2 -.-> Consensus

    Consensus --> LSM1

    Consensus --> LSM2

   

    DTMS["DTMS (P4)"] -.-> Consensus

    Consensus --> DLT["Decentralized Ledger (P13,P15)"]

    style Consensus fill:#f9f,stroke:#333,stroke-width:2px

end

classDef ies fill:#ccf,stroke:#333,stroke-width:1px

classDef lsm fill:#aaf,stroke:#333,stroke-width:1px

classDef watcher fill:#ddf,stroke:#333,stroke-width:1px

classDef ai fill:#afa,stroke:#333,stroke-width:1px

classDef data fill:#ddd,stroke:#333,stroke-width:1px

This diagram illustrates the decentralized enforcement mechanism. Notice the absence of a direct connection between the AI Hub and the LSMs. Instead:

LSMs and Watchers: Each IES instance has an LSM and a Watcher Mesh, functioning as described previously. They connect to shared RAM/SSD resources.

Consensus Engine: The central component is the Consensus Engine (P13). The AI Hub, along with all other Watcher Meshes, sends its analysis and recommended actions to the Consensus Engine. The DTMS (for trust context) also provides input to the Consensus Engine.

Decentralized Enforcement: The Consensus Engine, using a distributed consensus protocol, reaches an agreement on the appropriate action. The dotted lines from the Consensus Engine back to the LSMs represent the enforcement commands. Critically, these commands are issued only after consensus is reached. This decentralized approach enhances security because no single entity (even a compromised AI Hub) can dictate actions. All consensus decisions are logged to the DLT.

Proposal 3:  Hybrid Approach (Staged Enforcement):

graph LR

subgraph "Proposal&nbsp;3:&nbsp;Hybrid&nbsp;Approach&nbsp;(Staged&nbsp;Enforcement)"

    subgraph IES Instance 1

        LSM1[LSM 1] -- Passive Data Plane --> RAMSSD[RAM/SSD]

        IES1[IES 1] -- Data Plane --> RAMSSD

        Watcher1[Watcher 1] -- Unidirectional Control Plane --> LSM1

        Watcher1 -- Passive Data Plane --> RAMSSD

    end

    AIHub[AI Hub] --> Watcher1 -- Limited Actions --> LSM1

    AIHub -.-> ASKAHub[ASKA Hub]

    ASKAHub -- Policy Decisions --> PolicyEngine["Policy Engine (P4)"]

    PolicyEngine -- Critical Actions --> LSM1

    DTMS["DTMS (P4)"] -.-> PolicyEngine

    DTMS -.-> AIHub

    style ASKAHub fill:#ccf,stroke:#333,stroke-width:2px

    style PolicyEngine fill:#ccf,stroke:#333,stroke-width:1px

end

classDef ies fill:#ccf,stroke:#333,stroke-width:1px

classDef lsm fill:#aaf,stroke:#333,stroke-width:1px

classDef watcher fill:#ddf,stroke:#333,stroke-width:1px

classDef ai fill:#afa,stroke:#333,stroke-width:1px

classDef data fill:#ddd,stroke:#333,stroke-width:1px

This diagram illustrates the hybrid approach.

Limited Actions: The AI Hub can directly instruct the Watcher Mesh, but only for a pre-defined set of "limited actions" that are considered low-risk. These actions might include increasing monitoring frequency, collecting more detailed logs, or performing specific, non-disruptive checks within the IES.

Critical Actions: For critical actions (isolation, termination), the AI Hub must communicate with the ASKA Hub. The Hub's Policy Engine evaluates the AI Hub's recommendation, considering existing policies and DTMS trust levels. If approved, the Hub issues the critical action command to the LSM.

DTMS Integration: The DTMS provides trust information both to the AI Hub (for its initial assessment) and the Policy Engine (for final authorization).

This hybrid approach balances the need for rapid response to less critical threats with the importance of strict control over high-impact actions.

Key Differences Visualized:

Proposal 2 features the Consensus Engine as the central decision-making component, with no direct AI Hub to LSM connection.

Proposal 3 shows the AI Hub capable of limited direct action through the Watcher Mesh, while critical actions still route through the ASKA Hub and Policy Engine.

Comparison and Selection:

Feature

Proposal 1

Proposal 2

Proposal 3

Security

High

Highest

Medium-High

Speed

Low

Lowest

Medium

Complexity

Medium

High

High

Resilience

Medium

Highest

Medium-High

Strongest Proposal:  Proposal 2 (Decentralized Enforcement with Consensus) offers the highest security and resilience due to its decentralized nature and lack of a single point of failure.  While it introduces complexity and potential latency, these trade-offs are acceptable for critical security functions.  The consensus mechanism ensures that no single compromised component can dictate actions, significantly enhancing the overall security posture.

However, the complexity of implementing a robust and efficient distributed consensus mechanism should not be underestimated.  Careful consideration must be given to the specific consensus protocol, network communication overhead, and potential scenarios where consensus might not be reached.  A hybrid approach (Proposal 3) could be considered as a stepping stone towards full decentralization, allowing for faster response to less critical threats while the consensus mechanism is being developed and refined.

Review of the Security Mesh hierarchy

I. Core Principles Re-evaluation:

II. Data Plane Deep Dive - Reconsidering Passivity:

III. Anomaly Detection Re-evaluation:

IV. Control Plane Optimization:

V. Simpler Alternatives (trade-off considerations):

VI. Formal Verification Considerations (Throughout):

I. Deep Dive into Passive Data Plane:

II. Enhanced Anomaly Detection:

III. Streamlined Control Plane Communications:

IV. Enhanced AI Hub Architecture (Addressing Centralization):

V.  Simplifying the Architecture:

VI. Formal Verification Strategy:

Diagram 11c: Security Mesh Integration

graph LR

    subgraph ASKA["ASKA Instance"]

        Hub((ASKA Hub)):::high_level

       

         subgraph "Security Mesh"

            subgraph "Security Mesh Instance"

                SM_Instance{{"Security<br>Mesh<br>Instance"}}

            end

            IES_Mesh((IES<br>Instance)):::ies -- Data<br>Plane<br>(Read<Br>Only) --> RAMSSD[RAM/SSD]:::data

            LSM_Mesh[LSM]:::lsm -- Data<br>Plane<br>(Read<br>Only) --> RAMSSD

            Watcher_Mesh[Watcher Mesh]:::watcher -- One#8209;Way<br>Control<br>Plane --> LSM_Mesh

            Watcher_Mesh -- Data<br>Plane<br>(Read<br>Only) --> RAMSSD

            Watcher_Mesh -- Bidirectional<br>Control<br>Plane --> AI[AI Hub]:::ai

            MSM[MSM]:::msm -- One#8209;Way<br>Control<br>Plane --> LSM_Mesh

            Watcher_Mesh -- One#8209;Way<br>Contro<br>Plane --> MSM

        end

        IESCluster((("IES<br>Cluster"))):::medium_level

        Network["Network<br>&<br>Communication"]:::network

        DataResources["Data<br>&<br>Resources"]:::data

        UIExternal["UI<br>&<br>External<br>Systems"]:::ui

        AuditingGovernance["Auditing<br>&<br>Governance"]:::audit

        Hub --> IESCluster

        Hub --> Network

        Hub --> DataResources

        Hub --> UIExternal

        Hub --> AuditingGovernance

        Hub --> MSM

        Hub --> AI

       

        IESCluster -- Secure<br>Channel --> Network

        IESCluster -- Resource<br>Access --> DataResources

        IESCluster -- UI<br>Interactions --> UIExternal

        IESCluster -- Audit<br>Trails --> AuditingGovernance

        IESCluster -->|IES<br>Membership| SM_Instance

        IES_Mesh -->|IES<br>Membership| SM_Instance

    end

    classDef high_level fill:#f9f,stroke:#333,stroke-width:2px

    classDef medium_level fill:#ccf,stroke:#333,stroke-width:1px

    classDef low_level fill:#aaf,stroke:#333,stroke-width:1px

    classDef data fill:#afa,stroke:#333,stroke-width:1px

    classDef ui fill:#ffa,stroke:#333,stroke-width:1px

    classDef audit fill:#ccf,stroke:#333,stroke-width:1px

    classDef network fill:#eec,stroke:#333,stroke-width:1px

    classDef external fill:#d8d8d8,stroke:#333,stroke-width:1px

    classDef ies fill:#ccf,stroke:#333,stroke-width:1px

    classDef lsm fill:#aaf,stroke:#333,stroke-width:1px

    classDef watcher fill:#ddf,stroke:#333,stroke-width:1px

    classDef msm fill:#f9f,stroke:#333,stroke-width:2px

    classDef ai fill:#afa,stroke:#333,stroke-width:1px

Description for Diagram 11c: Security Mesh Integration

This diagram illustrates the integration of the Security Mesh within the broader ASKA architecture.  The Security Mesh provides a crucial layer of defense, offering comprehensive, real-time, and compromise-resilient monitoring of system activity. This description details the components, interactions, and security benefits of this integration.

I. ASKA Hub:

The ASKA Hub is the central orchestration and management point for the entire system. It facilitates communication and coordination between all other components, including the Security Mesh. The Hub's responsibilities include:

II. Security Mesh:

The Security Mesh is a hierarchical, out-of-band monitoring system designed for comprehensive and compromise-resilient security.

III.  Integration with ASKA Components:

Security Advantages of Security Mesh Integration:

Diagram 12a: Configuration Management and Deployment

graph LR

    subgraph "Configuration&nbsp;Management&nbsp;Module&nbsp;(CMM)"

        DLT["Decentralized Ledger (P13, P15)"] --> CMM

        CMM --> DA[Deployment Agent]

        DTMS["DTMS (P4)"] --> CMM

        MSM["MSM (P2)"] --> CMM

        AESDS["AESDS (P16)"] <--> CMM

        IAMA["IAMA (P16)"] --> CMM

        GovAI["Governance AI (P15)"] --> CMM

        User["User Input (P11)"] --> CMM

    end

    DA --> AESDS

    Policy["Policy Engine (P4)"] --> DA

    DTMS --> DA

    subgraph "Zone&nbsp;A"

        IES_A["IES Cluster (P1)"]

    end

    subgraph "Zone&nbsp;B"

        IES_B["IES Cluster (P1)"]

    end

    DA --> IES_A

    DA --> IES_B

    IES_A --> DLT

    IES_B --> DLT

    External[External Systems / Legacy] --> IAMA --> CMM

Description for Diagram 12a: Configuration Management and Deployment

This diagram details the internal components and connections of the ASKA Configuration Management Module (CMM), highlighting its role in validating, generating, and deploying configurations while integrating with other key ASKA components.

Components:

  1. Decentralized Ledger (DLT) (P13, P15):  The DLT serves as the source of truth for TRCs (Trust Root Configurations), policies, and the historical record of configurations.  It provides a tamper-proof and auditable repository for critical system information.

  1. TRC Validator (P1, P4): This component retrieves TRCs from the DLT and validates their integrity and authenticity. It checks digital signatures and ensures internal consistency within the TRC structure.  It utilizes functionalities described in Patent 1 (IES) and Patent 4 (DTMS).

  1. Policy Input: This represents the entry point for new or modified policies, which can originate from administrators, automated systems, or other ASKA components.

  1. Policy Validator (P4): This component validates incoming policies against predefined rules, constraints, and schema definitions, ensuring that they adhere to the ASKA policy framework as described in Patent 4 (DTMS).

  1. Merge: This function combines the validated TRCs and policies into a single, unified configuration candidate.

  1. Conflict Resolver (P13, P15): This crucial component detects and resolves any conflicts that may arise between TRCs and policies.  It uses predefined conflict resolution rules, zone-specific preferences, or a distributed consensus protocol (P13) to determine the final configuration.  The resolution process and outcomes are logged on the DLT for transparency and accountability.

  1. Validated Config: This represents the merged, validated, and conflict-free configuration, ready for further processing.

  1. Configuration Generator: This component generates the final configuration artifacts based on the validated input, user input via the Secure UI (P11), and configuration templates.  It can leverage AESDS (P16) for automated code generation or optimization based on the configuration.

  1. User Input (P11): This element represents the interface for authorized users to provide input, modify configurations, or trigger specific actions within the CMM through the Secure UI Kernel, providing a secure and controlled way for human interaction.

  1. Configuration Templates: These are predefined templates for common configuration scenarios, simplifying the configuration process and ensuring consistency across deployments.

  1. Version Control: This module manages different versions of configurations, enabling rollback to previous states if necessary. This feature provides resilience and allows for safe experimentation with configuration changes.

  1. Configuration Store (P24): This secure storage, likely implemented within HESE-DAR (P24), stores the finalized configurations, protecting them from unauthorized access or tampering.

  1. Deployment Agent (DA): This agent retrieves configurations from the Configuration Store and initiates the deployment process, distributing the configurations to the appropriate ASKA components (IES instances, network devices, etc.).

  1. Policy Simulator: This component allows administrators to simulate the impact of policy changes before they are deployed, providing a safe environment to test and validate configurations.

  1. Impact Analysis (AI - P10, P16): Using AI and potentially machine learning techniques (P10 and P16), this component analyzes the simulated policy changes and provides insights into their potential impact on system performance, security, and resource utilization.  It receives input from the MSM for real-time security context.

  1. Simulation Results (P11): The results of the simulation and impact analysis are presented to the user via the Secure UI Kernel, allowing for informed decision-making about configuration changes.

  1. DTMS (P4): The Dynamic Trust Management System provides real-time trust level information, which influences policy validation, conflict resolution, and deployment decisions within the CMM.

  1. MSM (P2): The Master Security Mesh provides security telemetry and threat intelligence, which can inform configuration choices, particularly within the Impact Analysis component.

  1. AESDS (P16): The Automated Evolutionary Software Development System interacts bidirectionally with the Configuration Generator.  AESDS can provide input for generating optimized code or configurations, and the CMM can trigger AESDS to generate or update software components based on the new configuration.

  1. IAMA (P16): The Isomorphic Architecture Monitoring and Adaptation module provides information about connected legacy systems, allowing the Configuration Generator to adapt configurations for compatibility and secure integration.

  1. Governance AI (P15): The Governance AI provides high-level policy recommendations and analysis, influencing both the Conflict Resolver and the Impact Analysis component, ensuring that configurations align with overall governance objectives.

Diagram 12b: Configuration Management Module (CMM) Internals

graph TD

    subgraph "Configuration&nbsp;Management&nbsp;Module&nbsp;(CMM)"

        subgraph "Policy&nbsp;&&nbsp;TRC&nbsp;Validation"

            DLT["Decentralized Ledger (P13, P15)"] --> TRC_Val["TRC Validator (P1, P4)"]

            PolicyIn[Policy Input] --> PolicyVal["Policy Validator (P4)"]

            TRC_Val --> Merge

            PolicyVal --> Merge

            Merge --> ConflictRes["Conflict Resolver (P13, P15)"]

            ConflictRes --> ValidatedConfig

        end

        subgraph "Configuration&nbsp;Generation&nbsp;&&nbsp;Versioning"

            ValidatedConfig --> ConfigGen[Configuration Generator]

            User["User Input (P11)"] --> ConfigGen

            Template[Configuration Templates] --> ConfigGen

            ConfigGen --> Versioning[Version Control]

            Versioning --> ConfigStore["Configuration Store (P24)"]

            ConfigStore --> DA[Deployment Agent]

        end

        subgraph "Simulation&nbsp;&&nbsp;Analysis"

            ValidatedConfig --> Sim[Policy Simulator]

            Sim --> Analysis["Impact Analysis (AI - P10, P16)"]

            Analysis --> SimResults["Simulation Results (P11)"]

            SimResults --> User

        end

        subgraph "ASKA&nbsp;Integration"

            DTMS["DTMS (P4)"] --> PolicyVal

            DTMS --> ConflictRes

            DTMS --> DA

            MSM["MSM (P2)"] --> Analysis

            AESDS["AESDS (P16)"] <--> ConfigGen

            IAMA["IAMA (P16)"] --> ConfigGen

        end

         

        subgraph Governance AI Feedback

          GovAI["Governance AI (P15)"] --> Analysis

          GovAI --> ConflictRes

        end

    end

Description for Diagram 12b: Configuration Management Module (CMM) Internals

The diagram details the architecture and operational flow of the CMM within the ASKA secure computing environment.  The CMM is responsible for the secure and efficient management of configurations, encompassing validation, generation, simulation, and deployment.  It achieves this through a combination of policy and TRC validation, configuration generation and versioning, impact simulation and analysis, and deep integration with other ASKA security modules.

Component Summary:

Detailed Process and ASKA Integration

The CMM process begins with the retrieval of TRCs and the input of new policies. The TRC Validator (leveraging Patent 1 and 4) ensures the integrity of retrieved TRCs, while the Policy Validator (P4) checks the validity of incoming policies.  These validated components are merged, and any conflicts are resolved by the Conflict Resolver, which consults the DTMS (P4) for trust information and the Governance AI (P15) for higher-level policy directives. The Conflict Resolver uses either pre-defined rules, consensus mechanisms, or a combination of approaches depending on the nature of the conflict and the specific policies involved.  Resolution details are logged on the DLT for transparency.

The resulting Validated Config is then used by the Configuration Generator to create the necessary configuration artifacts. This process may involve user input (P11) and leverage predefined Configuration Templates.  Critically, the Configuration Generator integrates with AESDS (P16) allowing for automated generation of optimized code and configuration files, further enhancing security by incorporating best practices and mitigating potential vulnerabilities.  The IAMA module (P16) feeds information about legacy systems to the Configuration Generator, enabling it to create configurations that are both secure and backward-compatible.

Before deployment, the validated configuration can be fed into the Policy Simulator, which, combined with the Impact Analysis module (using AI – P10, P16), provides insights into the potential effects of the changes. This process integrates with the MSM (P2) for real-time security context and the Governance AI (P15) for alignment with strategic objectives. Simulation Results are presented to the user via the Secure UI (P11) for review and approval. This feedback loop allows administrators to fine-tune configurations before they are deployed, minimizing risks and optimizing for desired outcomes.

The finalized configuration is then stored in the Configuration Store, secured by HESE-DAR (P24). The Deployment Agent (DA) retrieves the configuration from this secure store and orchestrates its deployment to target components (IES clusters, network elements, etc.), leveraging DTMS (P4) for authorization and secure communication channels. The entire process, including configuration changes, deployments, simulations, and resolutions, is logged on the Decentralized Ledger (DLT - P13, P15), creating a comprehensive audit trail secured by MDATS (P17).

Security Considerations:

This architecture tightly integrates with ASKA's security infrastructure:

Diagram 13: Error Handling and Logging

graph LR

    subgraph "ASKA&nbsp;Hub"

        subgraph "Configuration&nbsp;Management&nbsp;(CMM)"

            DLT["Decentralized Ledger (P13, P15)"] --> CMM

            CMM --> DA[Deployment Agent]

        end

        DA --> AESDS["AESDS (P16)"]

        Policy["Policy Engine (P4)"] --> DA

        DTMS["DTMS (P4)"] --> DA --> IES_Clusters

    end

    subgraph "IES&nbsp;Clusters&nbsp;(P1)"

        IES1[IES 1] --> Local_Err1["Local Error Module (P7)"]

        IES2[IES 2] --> Local_Err2["Local Error Module (P7)"]

        IESn[IES n] --> Local_Errn["Local Error Module (P7)"]

       

        subgraph IES 1

          App1["Application 1"] --> Local_Log1[Local Error Log] --> Local_Err1

          Kernel1[Secure Kernel] --> Local_Log1

        end

       

        subgraph IES 2

          App2["Application 2"] --> Local_Log2[Local Error Log] --> Local_Err2

          Kernel2[Secure Kernel] --> Local_Log2

        end

        subgraph IES n

          Appn["Application n"] --> Local_Logn[Local Error Log] --> Local_Errn

          Kerneln[Secure Kernel] --> Local_Logn

        end

         Local_Err1 --> ErrAgg

         Local_Err2 --> ErrAgg

         Local_Errn --> ErrAgg

    end

    subgraph "Out#8209;of#8209;Band&nbsp;Error&nbsp;Module&nbsp;(P35)"

        ErrAgg[Error Aggregator] --> Redactor["Secure Log Redactor (P16, P17)"]

        Redactor --> LevelA[Security Level A Output]

        Redactor --> LevelB[Security Level B Output]

        Redactor --> LegacyOut[Legacy System Output]

        DTMS --> Redactor

        MSM["MSM (P2)"] --> ErrAgg

    end

    subgraph "Multi#8209;Channel&nbsp;Network&nbsp;(P3)"

        LevelA --> ChannelA[Secure Channel A]

        LevelB --> ChannelB[Secure Channel B]

        LegacyOut --> ChannelL[Legacy Channel]

        ChannelA --> SIEM[SIEM Integration]

        ChannelB --> SIEM

        ChannelL --> SIEM_Legacy[Legacy SIEM]

         subgraph "Dedicated&nbsp;Unswitched&nbsp;Network&nbsp;Paths"

          ChannelA --> SIEM

          ChannelB --> SIEM

          ChannelC["Secure Channel C <br> (for future use)"] --> SIEM

          ChannelD["Secure Channel D <br> (for future use)"] --> SIEM

        end

    end

    subgraph "External&nbsp;Systems&nbsp;/&nbsp;Legacy"

        IAMA["IAMA (P16)"] --> CMM

         External[External Systems] --> SIZCF["SIZCF (P22)"]

    end

    External --> STN["STN (P27)"] --> DTG["DTG (P28)"] --> ATN["ATN (P3)"] --> IES_Clusters

    DLT --> STN

    DLT --> CMM

    DLT --> ErrAgg

    HESE_DAR["HESE-DAR (P24)"] --> IES_Clusters

    HESE_DAR --> STN

    HESE_DAR --> CMM

    AESDS <--> CMM

    SecureUI["Secure UI Kernel (P11)"] --> IES_Clusters

Description for Diagram 13: Error Handling and Logging

  1. Decentralized Log Generation: Within each IES instance (P1), applications (App1, App2, Appn) and the Secure Kernel generate error logs. These are sent to a Local Error Module (P7) within each IES. This decentralized approach ensures that even if one IES is compromised, logging continues in others. Each Local Error Module performs initial filtering and formatting of logs.  The Secure Kernel within each IES instance has direct access to the Local Error Log, enabling it to record critical kernel-level errors and system events directly.

  1. Error Aggregation:  The local error modules (Local_Err1, Local_Err2, Local_Errn) send their pre-processed logs to a central Error Aggregator (ErrAgg) within the Out-of-Band Error Module (P35). The MSM (P2) also feeds system-wide security events and anomalies to the aggregator.

  1. Secure Log Redaction: The Error Aggregator passes the logs to the Secure Log Redactor.  This component, leveraging AI techniques from AESDS (P16) and the audit capabilities of MDATS (P17), scans for and redacts sensitive information (cryptographic keys, PII, etc.) according to predefined rules and policies.  The redaction process itself is meticulously audited, with records of each redaction action stored on the DLT, linked to a 3D microstructure (P14, P17) if necessary. The DTMS (P4) can dynamically influence the redaction policies based on the current security context.

  1. Multi-Level Output: The redacted logs are then categorized into three security levels (A, B, and Legacy).  This categorization allows for different levels of detail and access control to be applied to the logs based on their sensitivity and the intended recipient.

  1. Secure SIEM Integration:  Four dedicated, unswitched network pathways through the Multi-Channel Network (P3) connect the error module outputs to the SIEM system.  This dedicated, non-switchable architecture guarantees that error reports are transmitted securely and reliably, preventing interception or manipulation. Level A and B outputs go to the main SIEM, while the Legacy output goes to a separate Legacy SIEM, if needed, for systems that cannot handle the ASKA log format. The unswitched pathways and multiple channels provide redundancy and resilience.

  1. ASKA Integration: The diagram illustrates the error module's integration with other key components:

Diagram 14a: Onboard AI Agent

graph

    %% Defining color-coded classes

    classDef hub fill:#FFEBE5,stroke:#FF6B4A,stroke-width:2px,color:#5A1B00;

    classDef agent fill:#E5F4FF,stroke:#409EFF,stroke-width:2px,color:#003152;

    classDef integration fill:#E5FFEB,stroke:#34D399,stroke-width:2px,color:#00663C;

    classDef monitoring fill:#FFF5E5,stroke:#FFA740,stroke-width:2px,color:#553000;

    classDef optional fill:#F0E5FF,stroke:#A855F7,stroke-width:2px,color:#3C0061;

    classDef user fill:#FFF0F0,stroke:#FF5252,stroke-width:2px,color:#5A0000;

    subgraph "ASKA&nbsp;Hub"

        AggHub((Aggregation & Processing Hub)):::hub --> SecureUI(["Secure<br>UI<br>Kernel<br>(P11)"]):::hub

        DTMS["DTMS<br>(P4)"]:::hub --> AggHub

        MSM{{"MSM<br>(P2)"}}:::hub --> AggHub

        Policy{"Policy<br>Engine<br>(P4)"}:::hub --> AggHub

    end

    subgraph "AI&nbsp;Agent&nbsp;IES&nbsp;(P1)"

        subgraph "LLM&nbsp;Engine"

            ModelStore{{"Model<br>Storage<br>(HESE-DAR - P24)"}}:::agent --> InferenceEngine(["Inference Engine (P12)"]):::agent

            Tokenizer((Tokenizer)):::agent --> InferenceEngine

            Context{{"Context<br>Management"}}:::agent --> InferenceEngine

        end

        subgraph "ASKA&nbsp;Integrations"

            DTMSint{{"DTMS<br>Integration<br>(P4, P25)"}}:::integration <--> DTMS

            MSM --> MSMint(["MSM<br>Integration<br>(P2)"]):::integration

            AESDS{{"AESDS<br>(P16)"}}:::integration --> AESDSint(["AESDS<br>Integration<br>(P16)"]):::integration

            DLTint{{"DLT<br>Integration<br>(P13, P15, P3)"}}:::integration <--> DLT((Decentralized<br>Ledger)):::integration

            RMint(["Resource<br>Mgr<br>Integration<br>(P9, P10)"]):::integration <--> RM((Resource<br>Manager)):::integration

            SIZCFint(["SIZCF<br>Integration<br>(P22)"]):::integration <--> SIZCF{{"SIZCF"}}:::integration

            IAMAint{{"IAMA<br>Integration<br>(P16)"}}:::integration <--> IAMA((IAMA)):::integration

        end

        subgraph "UI&nbsp;Monitoring&nbsp;Module"

          UI_Kernel(("Secure UI Kernel<br>(P11)")):::monitoring -- Data Diode (P2) --> UI_Monitor{{"UI<br>Monitor"}}:::monitoring

          UI_Monitor --> Sanitizer((Sanitizer/<br>Filter)):::monitoring --> LLMEngineIn["LLM<br>Inference<br>Parser"]

        end

        LLMEngineIn --> InferenceEngine

        InferenceEngine --> AgentAPI(("Agent API<br>(P2, P25)")):::agent

        AgentAPI --> AggHub

        subgraph "Optional&nbsp;Components&nbsp;(Future)"

            FLint{{"Federated<br>Learning<br>Integration<br>(P19)"}}:::optional

            ExtInt((External<br>System<br>Integration)):::optional

        end

    end

    User(((User))):::user --> SecureUI

    SecureUI -.-> UI_Kernel

   

    class AggHub,SecureUI,DTMS,MSM,Policy hub

    class ModelStore,InferenceEngine,Tokenizer,Context,LLMEngineIn,AgentAPI agent

    class DTMSint,MSMint,AESDS,AESDSint,DLTint,RMint,SIZCFint,IAMAint integration

    class UI_Kernel,UI_Monitor,Sanitizer monitoring

    class FLint,ExtInt optional

    class User user

Description for Diagram 14a: Onboard AI Agent

Component and Connection Details:

Diagram 14b: Onboard AI Agent Update Process

flowchart TD

    subgraph "AI&nbsp;Agent&nbsp;IES&nbsp;(P1)"

        subgraph "ASKA&nbsp;Hub(Not&nbsp;in&nbsp;AI&nbsp;Agent)"

            AESDS(("AESDS<br>(P16)")) --> UpdateMgr((("Update<br>Manager")))

            Policy{{"Policy Engine<br>(P4)"}} --> UpdateMgr

            UpdateMgr --> MCN[/"Multi-Channel<br>Network<br>(P3, P5)"/]

            DTMS(("DTMS<br>(P4)")) --> UpdateMgr

            MSM(["MSM<br>(P2)"]) --> |Monitoring| LLM_Engine

            UpdateMgr -.- DLT{{"Decentralized Ledger<br>(P13, P15)"}}

            RM["Resource Manager<br>(P10)"] --> UpdateMgr

        end

        subgraph "LLM&nbsp;Engine"

            UpdatePkg{{"Update Package<br>(Signed & Verified)"}} --> Installer((Installer))

            HESE_DAR["HESE-DAR<br>(P24)"] --> |Secure Storage| ModelStore[(Model<br>Storage)]

            ModelStore --> InferenceEngine(("Inference Engine<br>(P12)"))

            Tokenizer[/Tokenizer/] --> InferenceEngine

            Context["Context<br>Management"] --> InferenceEngine

            Installer --> ModelStore

            Installer --> Rollback(("Rollback<br>Mechanism"))

            Rollback --> ModelStore

            IAMA{{"IAMA<br>(P16)"}} --> Sandbox(("Sandbox<br>(P1)"))

            Sandbox --> Validation{{"Validation Results"}} --> Installer

        end

        LLM_Engine --> AgentAPI(("Agent API<br>(P2, P25)"))

        AgentAPI --> |Results/Actions| AggHub["Aggregation &<br>Processing Hub"]

        AggHub --> SecureUI(("Secure UI Kernel<br>(P11)"))

        User(["User"]) --> SecureUI

        Integrations{{"ASKA Integrations<br>(P2, P3, P4, P13, P15)"}} <--> DTMS

        Integrations -.- MSM

        Integrations -.- AESDS

    end

   

    MCN ----> UpdatePkg

    UpdateMgr ----> IAMA

    %% Define styles

    classDef mainNode fill:#FFDAC1,stroke:#FF9AA2,stroke-width:2,color:#333;

    classDef policyNode fill:#B5EAD7,stroke:#70C1B3,stroke-width:2,color:#333;

    classDef networkNode fill:#FFB7B2,stroke:#F08080,stroke-width:2,color:#333;

    classDef engineNode fill:#F3E9F0,stroke:#FF7171,stroke-width:2,color:#333;

    classDef storageNode fill:#FFDAC1,stroke:#FF9AA2,stroke-width:2,color:#333;

    classDef processNode fill:#D7DEEA,stroke:#A2C2F4,stroke-width:2,color:#333;

    %% Apply styles to specific nodes

    class AESDS,UpdateMgr,UpdatePkg,AggHub,Sandbox,Sandbox storageNode;

    class Policy,DLT,RM,AgentAPI,IAMA,Validation,SecureUI,Integrations policyNode;

    class MCN,MSM,LLM_Engine,DTMS networkNode;

    class InferenceEngine,Installer,Rollback engineNode;

    class ModelStore,HESE_DAR storageNode;

    class User,Tokenizer,Context processNode;

Description for Diagram 14b: Onboard AI Agent Update Process

Components and Connections:

Diagram 14c: Onboard AI Agent Security System Integration

graph TD

    subgraph "ASKA&nbsp;Security&nbsp;System"

        subgraph "Master&nbsp;Security&nbsp;Mesh&nbsp;(MSM&nbsp;#8209;&nbsp;P2)"

            MSM --> ThreatIntelFeed(["Threat<br>Intelligence<br>Feed"])

            MSM --> NetworkMon(("Network<br>Monitor<br>(P3)"))

            MSM --> SystemMon{{"System<br>Monitor<br>(P7,<br>P8)"}}

            MSM --> LocalMSMs[["Local<br>Security<br>Meshes<br>(P2)"]]

            ThreatIntelFeed --> AnomalyDetection(("Anomaly<br>Detection<br>Engine<br>(P7)"))

            AnomalyDetection --> MSM

            NetworkMon --> MSM

            SystemMon --> MSM

            LocalMSMs --> MSM

            AnomalyDetection --> AlertSystem(("Alert<br>System<br>(P7)"))

        end

        subgraph "Onboard&nbsp;AI&nbsp;Agent&nbsp;(Security&nbsp;Module)"

            subgraph "Threat&nbsp;Analysis&nbsp;&nbsp;&nbsp;Hunting"

                ThreatIntelFeed --> AI_ThreatIntel([AI<br>Threat<br>Intelligence])

                AI_ThreatIntel --> ProactiveHunting((Proactive<br>Threat<br>Hunting))

                ProactiveHunting --> ThreatReports{{Threat<br>Reports}}

                MSM --> AI_ThreatIntel

                AnomalyDetection --> AI_AnomalyAnalysis([AI<br>Anomaly<br>Analysis])

                AI_AnomalyAnalysis --> ThreatReports

            end

            subgraph "Alert&nbsp;Prioritization&nbsp;&&nbsp;Response"

                AlertSystem --> AI_AlertPrioritization([AI<br>Alert<br>Prioritization])

                AI_AlertPrioritization --> PrioritizedAlerts{{Prioritized<br>Alerts}}

                AI_AlertPrioritization --> AutomatedResponse(("Automated<br>Response<br>(P7)"))

                AutomatedResponse --> ResponseSystem{{"Response<br>System<br>(P7)"}}

            end

           

            UI_Kernel(["Secure<br>UI<br>Kernel<br>(P11)"]) -- "Data<br>Diode<br>(P2)" --> UI_Monitor((UI<br>Monitor))

            UI_Monitor --> AI_AlertPrioritization

            UI_Monitor --> AI_AnomalyAnalysis

            subgraph "Detailed&nbsp;Reporting&nbsp;&nbsp;&nbsp;&nbsp;Analysis"

                ThreatReports --> DetailedAnalysis{{Detailed<br>Threat<br>Analysis}}

                DetailedAnalysis --> RemediationRecommendations([Remediation<br>Recommendations])

            end

            subgraph "ASKA&nbsp;Integration"

                DTMS(["DTMS<br>(P4)"]) --> AI_AlertPrioritization

                DTMS --> AI_ThreatIntel

                DLT(("Decentralized<br>Ledger<br>(P13,<br>P15)")) --> AI_ThreatIntel

                DLT --- AI_AlertPrioritization

                DLT --- DetailedAnalysis

                AgentAPI([Agent<br>API]) --> ResponseSystem

                ConsensusEngine(("Consensus<br>Engine<br>(P13)")) --> SecurityActions{{Security<br>Actions}}

                AI_AnomalyAnalysis --> ConsensusEngine

                AI_AlertPrioritization --> ConsensusEngine

                AI_ThreatIntel --> ConsensusEngine

            end

        end

        ResponseSystem --> MSM

        SecurityActions --> ResponseSystem

        RemediationRecommendations --> SecurityPersonnel([Security<br>Personnel])

        PrioritizedAlerts --> SecurityPersonnel

        SecurityReports([Security<br>Reports]) --> SecurityPersonnel

        ThreatReports --> SecurityReports

        DetailedAnalysis --> SecurityReports

    end

style MSM fill:#ffcccb,stroke:#e63946,stroke-width:2px

style ThreatIntelFeed fill:#a8dadc,stroke:#457b9d,stroke-width:2px

style NetworkMon fill:#ffd60a,stroke:#f1faee,stroke-width:2px

style SystemMon fill:#b0f9b6,stroke:#264653,stroke-width:2px

style LocalMSMs fill:#f1faee,stroke:#1d3557,stroke-width:2px

style AnomalyDetection fill:#e9c46a,stroke:#f4a261,stroke-width:2px

style AlertSystem fill:#b0f9b6,stroke:#264653,stroke-width:2px

style AI_ThreatIntel fill:#ffd60a,stroke:#f1faee,stroke-width:2px

style ProactiveHunting fill:#a8dadc,stroke:#457b9d,stroke-width:2px

style ThreatReports fill:#ffcccb,stroke:#e63946,stroke-width:2px

style AI_AnomalyAnalysis fill:#b0f9b6,stroke:#264653,stroke-width:2px

style AI_AlertPrioritization fill:#e9c46a,stroke:#f4a261,stroke-width:2px

style PrioritizedAlerts fill:#ffd60a,stroke:#f1faee,stroke-width:2px

style AutomatedResponse fill:#f1faee,stroke:#1d3557,stroke-width:2px

style ResponseSystem fill:#b0f9b6,stroke:#264653,stroke-width:2px

style DTMS fill:#a8dadc,stroke:#457b9d,stroke-width:2px

style DLT fill:#ffcccb,stroke:#e63946,stroke-width:2px

style AgentAPI fill:#ffd60a,stroke:#f1faee,stroke-width:2px

style ConsensusEngine fill:#b0f9b6,stroke:#264653,stroke-width:2px

style SecurityActions fill:#e9c46a,stroke:#f4a261,stroke-width:2px

style SecurityPersonnel fill:#f1faee,stroke:#1d3557,stroke-width:2px

linkStyle 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18 stroke:#555,stroke-width:2px

Description for Diagram 14c: Onboard AI Agent Security System Integration

This diagram illustrates the integrated operation of ASKA's security system, highlighting the collaborative relationship between the Master Security Mesh (MSM) and the Onboard AI Agent. It emphasizes how these two subsystems work together, leveraging a consensus-driven approach, to provide comprehensive and robust security within ASKA.

1. Master Security Mesh (MSM - P2): The MSM acts as the central nervous system for ASKA's security, collecting and correlating data from various sources:

The data from these sources feeds into the Anomaly Detection Engine (P7), which analyzes it for anomalies and potential threats. The Anomaly Detection Engine then triggers the Alert System (P7) to generate alerts for security incidents.

2. Onboard AI Agent (Security Module):  This intelligent agent enhances the security system by providing advanced analysis, proactive threat hunting, and context-aware alert prioritization.  It's crucial to understand that this agent is not part of the MSM but works in conjunction with it.

3. Consensus-Driven Security:

The diagram highlights the consensus-driven nature of the security system:

4.  Human Oversight:  Ultimately, Security Personnel receive Prioritized Alerts, Security Reports, and Remediation Recommendations, providing human oversight of the AI-driven security process.

Consensus-Driven AI Security:

  1. UI Monitoring Integration: The UI Monitor now feeds into both AI Alert Prioritization and AI Anomaly Analysis. This allows the AI agent to correlate user behavior with system events, potentially identifying insider threats or user errors that might contribute to security vulnerabilities.  The unidirectional data diode connection remains crucial for security.

  1. Consensus Engine (P13): A Consensus Engine (P13) is introduced.  This engine receives inputs from multiple AI modules:

The Consensus Engine uses a distributed consensus algorithm (similar to those used in blockchain - P13, P15) to reach an agreement on the appropriate security actions.  This consensus-driven approach prevents any single AI component from making potentially disruptive security decisions unilaterally. It also increases resilience against manipulation or compromise of individual AI modules.

  1. Security Actions: The Consensus Engine's output, the agreed-upon Security Actions, is sent to the Response System (P7), which executes the actions. This ensures that responses are based on a consensus view, reducing the risk of false positives or inappropriate actions.

  1. Detailed Analysis and Reporting: The Detailed Analysis component also receives input from the Consensus Engine. It produces detailed Threat Reports, prioritized alerts, and remediation recommendations for human security personnel, which helps security teams investigate and respond to threats effectively.

How the Consensus Mechanism Works:

  1. The various AI modules (Anomaly Analysis, Alert Prioritization, Threat Intelligence) independently analyze data from their respective sources (MSM, UI Monitor, Threat Intel Feeds, Decentralized Ledger).

  1. Each module submits its proposed security action (or a "vote") to the Consensus Engine.

  1. The Consensus Engine uses a distributed consensus algorithm to reach an agreement among the AI modules. This could be a simple majority vote, a weighted vote based on trust levels, or a more sophisticated consensus protocol.  The Decentralized Ledger logs all votes and the final consensus decision.

  1. The agreed-upon security action is sent to the Response System for execution.  Simultaneously, a detailed report is compiled and sent to human security personnel for review and further action.

Example Scenario:

The Network Monitor detects unusual network traffic patterns. The Anomaly Detection Engine flags this as a potential DDoS attack. Simultaneously, the UI Monitor observes the user attempting to access a restricted resource. The AI Agent correlates these events and proposes blocking the user's access and implementing rate-limiting on the affected network interface.  The Consensus Engine receives this proposal and other inputs from the Threat Intelligence module. If a consensus is reached, the Response System takes the appropriate actions, while a detailed report is generated for security personnel.

This enhanced design integrates a robust consensus mechanism into the AI-driven security system, leveraging insights from multiple sources (UI, system internals, threat intelligence) and preventing any single AI component from making critical security decisions autonomously.  The use of a distributed consensus algorithm adds resilience and transparency to the system, further strengthening ASKA's comprehensive security posture.

Diagram 15: BCI Integration:

graph LR

    subgraph "ASKA&nbsp;Hub&nbsp;(P4)"

        DTMS(("DTMS<br>(P4)")) --> ASKA

    end

    subgraph "ASKA"

        subgraph "ASKA&nbsp;Environment"

            subgraph "Secure&nbsp;Data&nbsp;Enclaves&nbsp;(P20)"

                AI_Model(("AI<br>Model<br>(P20)")) --> SecureDataEnclaves["Data<br>Enclaves"]

                Federated_Learning(("Federated<br>Learning<br>(P19)")) --> SecureDataEnclaves

            end

            subgraph "Secure&nbsp;Kernel&nbsp;(P1)"

                subgraph "Hardware&nbsp;Isolation&nbsp;(IES&nbsp;-&nbsp;P1)"

                    BCI_Hardware(("BCI<br>Hardware<br>(P1)")) --> IES

                end

                SecureKernel["Kernel"] --> SecureDataEnclaves

                SecureKernel --> Encryption(("Encryption<br>(P2)"))

                subgraph "Trusted&nbsp;Execution&nbsp;Environment&nbsp;(TEE)"

                    AI_Agent(("AI<br>Agent<br>(P16,&nbsp;P20)")) --> TEE

                end

                subgraph "Data&nbsp;Storage&nbsp;(P24)"

                    HESE_DAR(("HESE-DAR<br>(P24)")) --> SecureDataEnclaves

                    HESE_DAR --> Access_Control["Access<br>Control<br>(P2,&nbsp;P25)"]

                end

            end

            subgraph "Network&nbsp;Channels"

                subgraph "Secure&nbsp;Channels&nbsp;(P3,&nbsp;P5)"

                    subgraph "Secure&nbsp;Cloud"

                        Cloud_Service(("Cloud<br>Service")) --> SecureChannels["Secure<br>Channels>"]

                    end

                    SecureChannels --> SecureKernel

                end

            end

        end

        subgraph "Security&nbsp;Mechanisms"

            Encryption(("Encryption<br>(P2)")) --> ASKAEnvironment["ASKA<br>Environment"]

            Data_Diodes(("Data&nbsp;Diodes<br>(P2)")) --> ASKAEnvironment

            TEE((TEE)) --> ASKAEnvironment

            Non_Switchable_Channels(("Non-Switchable<br>Channels<br>(P3,&nbsp;P5)")) --> ASKAEnvironment

        end

    end

    subgraph "User&nbsp;Interface"

        UI_Kernel(("UI<br>Kernel<br>(P11)")) --> Data_Diode["Data<br>Diode"]

        Data_Diode --> SecureKernel

        UI_Kernel --> UI_Monitor((UI<br>Monitor))

        UI_Monitor --> PrioritizedAlerts((Prioritized<br>Alerts))

        subgraph "User"

            UserX((User<br>Action))

            UserX --> UI_Monitor

            UserX --> PrioritizedAlerts

        end

        subgraph "BCI&nbsp;Input"

            BCI_Input((BCI<br>Input)) --> UI_Monitor

        end

    end

    PrioritizedAlerts --> AI_AlertPrioritization((AI<br>Alert<br>Prioritization))

    AI_AlertPrioritization --> SecureKernel

    UI_Monitor --> AI_AnomalyAnalysis((AI<br>Anomaly<br>Analysis))

    AI_AnomalyAnalysis --> SecureKernel

    UI_Monitor --> AI_ThreatIntel((AI<br>Threat<br>Intelligence))

    AI_ThreatIntel --> SecureKernel

    %% Define styles

    classDef pastelNode fill:#D1E8E4,stroke:#A8D8D0,stroke-width:2

    classDef pastelEdge stroke:#345774,stroke-width:1

    %% Apply styles to nodes and edges

    class DTMS,AI_Model,Federated_Learning,BCI_Hardware,SecureKernel,Encryption,AI_Agent,HESE_DAR,Access_Control,UI_Kernel,UI_Monitor,PrioritizedAlerts,UserX,BCI_Input,AI_AlertPrioritization,AI_AnomalyAnalysis,AI_ThreatIntel pastelNode;

    class DTMS,AI_Model,Federated_Learning,BCI_Hardware,SecureKernel,Encryption,AI_Agent,HESE_DAR,Access_Control,UI_Kernel,UI_Monitor,PrioritizedAlerts,UserX,BCI_Input,AI_AlertPrioritization,AI_AnomalyAnalysis,AI_ThreatIntel pastelEdge;

Description for Diagram 15: BCI Integration

Explanation:

Key Points:

Diagram 16a: Remote UI Session

graph

    subgraph "Client"

        ClientApp[ASKA<br>Remote Client] --> SecureChannel["Secure Communication<br>(P2, P3, P5)"]

    end

    subgraph "ASKA Hub"

        direction LR

        Auth["Authentication<br>(MFA - P23)"] --> SessionMgr[Session Manager]

        SessionMgr --> CapMgr["Capability Manager<br>(P25)"]

        DTMS["DTMS (P4)"] --> SessionMgr

        SessionMgr --> UI_Session_IES[Remote UI Session IES]

        SessionMgr --> AuditLog["Audit Log<br>(P13, P15, P17)"]

        AuditLog --> DLT["Decentralized Ledger"]

    end

    subgraph "Remote UI Session IES (P1)"

        direction LR

        UI_Session_IES --> SecureUI["Secure UI Kernel (P11)"]

        SecureUI --> InputSanitizer["Input<br>Sanitizer<br>(P11)"]

        InputSanitizer --> RenderingEngine["Rendering Engine"]

        RenderingEngine --> SecureChannel

        UI_Session_IES --> SessionMonitor["Session Monitor<br>(P2, P7)"]

        SessionMonitor --> MSM["MSM (P2)"]

    end

    SecureChannel --> ClientApp

    MSM --> SessionMgr

    style Client fill:#ccf,stroke:#333,stroke-width:2px

Description for Diagram 16a: Remote UI Session

This diagram shows the architecture of the Secure Remote UI Session system. The client establishes a secure connection to the ASKA Hub, which manages authentication, authorization, and session parameters. The Hub then creates a dedicated IES instance to host the session, which is monitored for anomalies. The UI rendering and data transfer are securely managed, with input sanitization to prevent attacks.

Diagram 16b: Remote UI Integration

graph LR

    subgraph ASKA Hub

        direction LR

        SessionMgr[Session Manager] --> DTMS["DTMS (P4)"]

        SessionMgr --> CapMgr["Capability Manager (P25)"]

        SessionMgr --> AuditLog["Audit Log (P13, P15, P17)"]

        AuditLog --> DLT["Decentralized Ledger"]

        SessionMgr --> MSM["MSM (P2)"]

        SessionMgr --> PolicyEngine["Policy Engine (P4)"]

        SessionMgr --> OnboardAI["Onboard AI Agent (if available)"]

    end

    subgraph "Remote UI Session IES (P1)"

        UI_Session_IES[Remote UI Session IES] --> MSM

        UI_Session_IES --> DTMS

        UI_Session_IES --> InputSanitizer["Input Sanitizer (P11)"]

    end

Description for Diagram 16b: Remote UI Integration

This diagram highlights the integration points of the Secure Remote UI Session system within ASKA. The Session Manager interacts with key ASKA components for authentication (MFA), authorization (Capabilities), auditing (Decentralized Ledger and MDATS), security monitoring (MSM), and policy enforcement (Policy Engine). The Onboard AI Agent, if present, further enhances security with real-time threat detection and response. The Remote UI Session IES receives policy updates and trust level information from the DTMS and passes session-related information (for monitoring and analysis) to the MSM. Input sanitization within the Remote UI Session IES prevents injection attacks.

Abbreviations

Abbreviation

Full Name

Short Description

AESDS

Automated Evolutionary Software Development System

AI-driven system for software evolution and secure deployment.

DTMS

Dynamic Trust Management System

Manages trust relationships and access control based on dynamic metrics.

IAMA

Isomorphic Architecture Monitoring & Adaptation

Monitors legacy systems and generates proactive security patches.

STN

Sovereign Trust Network

Isolated data plane for secure communication.

DTG

Dynamic Trust Gateway

Mediates communication between ATN and STN.

ATN

Authenticated Trust Network

Network with authenticated communication.

HESE-DAR

Hardware-Enforced Secure Encrypted Enclave for Data at Rest

Hardware-based encryption for data at rest.

IES

Isolated Execution Stack

Hardware-isolated execution environment.

ZKEE

Zero-Knowledge Execution Environment

Allows computations on encrypted data without revealing underlying information.

MSM

Hierarchical Security Mesh

Multi-layered security monitoring system.

Hub

ASKA Hub

Central control and management component.

CapMgr

Capability Manager

Manages capabilities for inter-IES communication.

PolicyEngine

Policy Engine

Enforces security policies.

ResourceMgr

Resource Manager

Manages resource allocation.

ChannelMgr

Channel Manager

Manages the multi-channel network.

Secure_Channel

Secure Channels

Secure communication channels.

External_Systems

External Systems

Systems outside of the ASKA environment.

Firewall

Firewall

Network firewall.

SecureUI

Secure UI Kernel

Secure and isolated user interface.

DLT

Decentralized Ledger

Distributed ledger for secure record-keeping.

MDATS

Multi-Dimensional Audit Trail System

Combines digital and physical audit trails.

UI_Integration

UI Integration Module

Facilitates communication between ASKA Hub and Secure UI.

SIZCF

Secure Inter-Zone Collaboration Framework

Enables secure collaboration between different zones.

AnomalyDetector

Anomaly Detector

Detects anomalies in system behavior.

LocalMSM

Local Security Mesh

Local security monitoring within an IES.

SecureStorage

Secure Storage

Secure storage for encrypted data.

GovernanceAI

Governance AI

AI-driven component for governance auditing and transparency.

QEAMS

Quantum-Entangled Auxiliary Memory System

Provides out-of-band integrity verification for data using quantum entanglement.

SAMS

Spatiotemporal Auxiliary Memory System

Provides out-of-band integrity verification using spatiotemporal metadata.

PR-SAMS

Passively Radiative Spatiotemporal Auxiliary Memory System

A low-power version of SAMS using passive radiative sensing.

QE-OTP

Quantum Entangled One Time Pad

A one time pad using quantum key exchange.

SHVS

Secure Hyper-Virtualization System

Enables secure and isolated execution environments within ASKA, supporting collaborative workloads.

CE-PCFS

Capability-Enhanced Packet-Carried Forwarding State

Provides fine-grained access control for communication between IES instances within ASKA.

SIBRA

Secure Inter-Broker Routing Algorithm

Ensures quality of service (QoS) for secure communication paths, particularly for bandwidth-intensive applications.

MPC

Secure Multi-Party Computation

Enables privacy-preserving collaborative machine learning across multiple ASKA instances.

CFI

Control-Flow Integrity

Protects the Secure UI Kernel against code injection attacks.

DPI

Deep Packet Inspection

Examines data packets to enforce security policies and detect malicious activity within the DTG.